99 research outputs found

    The Intermediate Scale MSSM, the Higgs Mass and F-theory Unification

    Full text link
    Even if SUSY is not present at the Electro-Weak scale, string theory suggests its presence at some scale M_{SS} below the string scale M_s to guarantee the absence of tachyons. We explore the possible value of M_{SS} consistent with gauge coupling unification and known sources of SUSY breaking in string theory. Within F-theory SU(5) unification these two requirements fix M_{SS} ~ 5 x 10^{10} GeV at an intermediate scale and a unification scale M_c ~ 3 x 10^{14} GeV. As a direct consequence one also predicts the vanishing of the quartic Higgs SM self-coupling at M_{SS} ~10^{11} GeV. This is tantalizingly consistent with recent LHC hints of a Higgs mass in the region 124-126 GeV. With such a low unification scale M_c ~ 3 x 10^{14} GeV one may worry about too fast proton decay via dimension 6 operators. However in the F-theory GUT context SU(5) is broken to the SM via hypercharge flux. We show that this hypercharge flux deforms the SM fermion wave functions leading to a suppression, avoiding in this way the strong experimental proton decay constraints. In these constructions there is generically an axion with a scale of size f_a ~ M_c/(4\pi)^2 ~ 10^{12} GeV which could solve the strong CP problem and provide for the observed dark matter. The prize to pay for these attractive features is to assume that the hierarchy problem is solved due to anthropic selection in a string landscape.Comment: 48 pages, 8 figures. v3: further minor correction

    Stochastic Gravity: Theory and Applications

    Get PDF
    Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel. In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime, compute the two-point correlation functions of these perturbations and prove that Minkowski spacetime is a stable solution of semiclassical gravity. Second, we discuss structure formation from the stochastic gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a black hole and describe the metric fluctuations near the event horizon of an evaporating black holeComment: 100 pages, no figures; an update of the 2003 review in Living Reviews in Relativity gr-qc/0307032 ; it includes new sections on the Validity of Semiclassical Gravity, the Stability of Minkowski Spacetime, and the Metric Fluctuations of an Evaporating Black Hol

    Brane-World Gravity

    Get PDF
    The observable universe could be a 1+3-surface (the "brane") embedded in a 1+3+\textit{d}-dimensional spacetime (the "bulk"), with Standard Model particles and fields trapped on the brane while gravity is free to access the bulk. At least one of the \textit{d} extra spatial dimensions could be very large relative to the Planck scale, which lowers the fundamental gravity scale, possibly even down to the electroweak (\sim TeV) level. This revolutionary picture arises in the framework of recent developments in M theory. The 1+10-dimensional M theory encompasses the known 1+9-dimensional superstring theories, and is widely considered to be a promising potential route to quantum gravity. At low energies, gravity is localized at the brane and general relativity is recovered, but at high energies gravity "leaks" into the bulk, behaving in a truly higher-dimensional way. This introduces significant changes to gravitational dynamics and perturbations, with interesting and potentially testable implications for high-energy astrophysics, black holes, and cosmology. Brane-world models offer a phenomenological way to test some of the novel predictions and corrections to general relativity that are implied by M theory. This review analyzes the geometry, dynamics and perturbations of simple brane-world models for cosmology and astrophysics, mainly focusing on warped 5-dimensional brane-worlds based on the Randall--Sundrum models. We also cover the simplest brane-world models in which 4-dimensional gravity on the brane is modified at \emph{low} energies -- the 5-dimensional Dvali--Gabadadze--Porrati models. Then we discuss co-dimension two branes in 6-dimensional models.Comment: A major update of Living Reviews in Relativity 7:7 (2004) "Brane-World Gravity", 119 pages, 28 figures, the update contains new material on RS perturbations, including full numerical solutions of gravitational waves and scalar perturbations, on DGP models, and also on 6D models. A published version in Living Reviews in Relativit

    Listeriolysin O Is Strongly Immunogenic Independently of Its Cytotoxic Activity

    Get PDF
    The presentation of microbial protein antigens by Major Histocompatibility Complex (MHC) molecules is essential for the development of acquired immunity to infections. However, most biochemical studies of antigen processing and presentation deal with a few relatively inert non-microbial model antigens. The bacterial pore-forming toxin listeriolysin O (LLO) is paradoxical in that it is cytotoxic at nanomolar concentrations as well as being the source of dominant CD4 and CD8 T cell epitopes following infection with Listeria monocytogenes. Here, we examined the relationship of LLO toxicity to its antigenicity and immunogenicity. LLO offered to antigen presenting cells (APC) as a soluble protein, was presented to CD4 T cells at picomolar to femtomolar concentrations- doses 3000–7000-fold lower than free peptide. This presentation required a dose of LLO below the cytotoxic level. Mutations of two key tryptophan residues reduced LLO toxicity by 10–100-fold but had no effect on its presentation to CD4 T cells. Thus there was a clear dissociation between the cytotoxic properties of LLO and its very high antigenicity. Presentation of LLO to CD8 T cells was not as robust as that seen in CD4 T cells, but still occurred in the nanomolar range. APC rapidly bound and internalized LLO, then disrupted endosomal compartments within 4 hours of treatment, allowing endosomal contents to access the cytosol. LLO was also immunogenic after in vivo administration into mice. Our results demonstrate the strength of LLO as an immunogen to both CD4 and CD8 T cells

    A 119-125 GeV Higgs from a string derived slice of the CMSSM

    Get PDF
    The recent experimental hints for a relatively heavy Higgs with a mass in the range 119-125 GeV favour supersymmetric scenarios with a large mixing in the stop mass matrix. It has been shown that this is possible in the constrained Minimal Super-symmetric Standard Model (CMSSM), but only for a very specific relation between the trilinear parameter and the soft scalar mass, favouring A ≈ −2m for a relatively light spectrum, and sizable values of tan β. We describe here a string-derived scheme in which the first condition is automatic and the second arises as a consequence of imposing radiative EW symmetry breaking and viable neutralino dark matter in agreement with WMAP constraints. More specifically, we consider modulus dominated SUSY-breaking in Type II string compactifications and show that it leads to a very predictive CMSSM-like scheme, with small departures due to background fluxes. Imposing the above constraints leaves only one free parameter, which corresponds to an overall scale. We show that in this construction A=−3/2–√m≃−2mA=−3/2m≃−2m and in the allowed parameter space tan β ≃ 38 − 41, leading to 119 GeV < mh  < 125 GeV. The recent LHCb results on BR(Bs → μ+μ−) further constrain this range, leaving only the region with mh ~ 125. GeV. We determine the detectability of this model and show that it could start being probed by the LHC at 7(8) TeV with a luminosity of 5(2) fb−1, and the whole parameter space would be accessible for 14 TeV and 25 fb−1. Furthermore, this scenario can host a long-lived stau with the right properties to lead to catalyzed BBN. We finally argue that anthropic arguments could favour the highest value for the Higgs mass that is compatible with neutralino dark matter, i.e., mh-125 GeV
    corecore