125 research outputs found

    Analysis of TSG101 tumour susceptibility gene transcripts in cervical and endometrial cancers

    Get PDF
    Carcinoma of the uterine cervix is a common malignancy among women that has been found to show loss of heterozygosity in the chromosome 11p. Recent studies have localized the TSG101 gene in this region, and also demonstrated a high frequency of abnormalities of this gene in human breast cancer. To determine the role of the TSG101 gene in the carcinogenesis of cervical and uterine carcinoma, 19 cases of cervical carcinoma and five cases of endometrial carcinoma, as well as nearby non-cancerous tissue from the same patients, and 16 blood samples from healthy persons as normal control were analysed by Southern blot analysis of genomic DNA, reverse transcription of the TSG101 mRNA followed by PCR amplification and sequencing of the products. We found that abnormal transcripts of the TSG101 gene were common both in cancerous or non-cancerous tissues of the uterus and cervix and in normal peripheral mononuclear cells. There was no genomic deletion or rearrangement in spite of the presence of abnormal transcripts, and no definite relationship between the abnormal transcripts and HPV infection was found. Although the frequency of abnormal transcripts was higher in cancerous than in non-cancerous tissue, normal peripheral mononuclear cells also had abnormal transcripts. Given these findings, the role of the TSG101 gene as a tumour-suppressor gene should be re-evaluated. Because some aberrant transcripts could be found at the first PCR reaction, we suggest that the aberrant transcripts might be the result of imperfect minor splicesome products. © 1999 Cancer Research Campaig

    Modelling home care organisations from an operations management perspective

    Get PDF
    Home Care (HC) service consists of providing care to patients in their homes. During the last decade, the HC service industry experienced significant growth in many European countries. This growth stems from several factors, such as governmental pressure to reduce healthcare costs, demographic changes related to population ageing, social changes, an increase in the number of patients that suffer from chronic illnesses, and the development of new home-based services and technologies. This study proposes a framework that will enable HC service providers to better understand HC operations and their management. The study identifies the main processes and decisions that relate to the field of HC operations management. Hence, an IDEF0 (Integrated Definition for Function Modelling) activity-based model describes the most relevant clinical, logistical and organisational processes associated with HC operations. A hierarchical framework for operations management decisions is also proposed. This analysis is derived from data that was collected by nine HC service providers, which are located in France and Italy, and focuses on the manner in which operations are run, as well as associated constraints, inputs and outputs. The most challenging research areas in the field of HC operations management are also discussed

    Effects of isoflavones (soy phyto-estrogens) on serum lipids: a meta-analysis of randomized controlled trials

    Get PDF
    OBJECTIVES: To determine the effects of isoflavones (soy phyto-estrogens) on serum total cholesterol (TC), low density lipoprotein cholesterol (LDL), high density lipoprotein cholesterol (HDL) and triglyceride (TG). METHODS: We searched electronic databases and included randomized trials with isoflavones interventions in the forms of tablets, isolated soy protein or soy diets. Review Manager 4.2 was used to calculate the pooled risk differences with fixed effects model. RESULTS: Seventeen studies (21 comparisons) with 853 subjects were included in this meta-analysis. Isoflavones tablets had insignificant effects on serum TC, 0.01 mmol/L (95% CI: -0.17 to 0.18, heterogeneity p = 1.0); LDL, 0.00 mmol/L (95% CI: -0.14 to 0.15, heterogeneity p = 0.9); HDL, 0.01 mmol/L (95% CI: -0.05 to 0.06, heterogeneity p = 1.0); and triglyceride, 0.03 mmol/L (95% CI: -0.06 to 0.12, heterogeneity p = 0.9). Isoflavones interventions in the forms of isolated soy protein (ISP), soy diets or soy protein capsule were heterogeneous to combine. CONCLUSIONS: Isoflavones tablets, isolated or mixtures with up to 150 mg per day, seemed to have no overall statistical and clinical benefits on serum lipids. Isoflavones interventions in the forms of soy proteins may need further investigations to resolve whether synergistic effects are necessary with other soy components

    A Gap Analysis Methodology for Collecting Crop Genepools: A Case Study with Phaseolus Beans

    Get PDF
    Background The wild relatives of crops represent a major source of valuable traits for crop improvement. These resources are threatened by habitat destruction, land use changes, and other factors, requiring their urgent collection and long-term availability for research and breeding from ex situ collections. We propose a method to identify gaps in ex situ collections (i.e. gap analysis) of crop wild relatives as a means to guide efficient and effective collecting activities. Methodology/Principal Findings The methodology prioritizes among taxa based on a combination of sampling, geographic, and environmental gaps. We apply the gap analysis methodology to wild taxa of the Phaseolus genepool. Of 85 taxa, 48 (56.5%) are assigned high priority for collecting due to lack of, or under-representation, in genebanks, 17 taxa are given medium priority for collecting, 15 low priority, and 5 species are assessed as adequately represented in ex situ collections. Gap “hotspots”, representing priority target areas for collecting, are concentrated in central Mexico, although the narrow endemic nature of a suite of priority species adds a number of specific additional regions to spatial collecting priorities. Conclusions/Significance Results of the gap analysis method mostly align very well with expert opinion of gaps in ex situ collections, with only a few exceptions. A more detailed prioritization of taxa and geographic areas for collection can be achieved by including in the analysis predictive threat factors, such as climate change or habitat destruction, or by adding additional prioritization filters, such as the degree of relatedness to cultivated species (i.e. ease of use in crop breeding). Furthermore, results for multiple crop genepools may be overlaid, which would allow a global analysis of gaps in ex situ collections of the world's plant genetic resource

    Novel Roles of cAMP Receptor Protein (CRP) in Regulation of Transport and Metabolism of Carbon Sources

    Get PDF
    CRP (cAMP receptor protein), the global regulator of genes for carbon source utilization in the absence of glucose, is the best-studied prokaryotic transcription factor. A total of 195 target promoters on the Escherichia coli genome have been proposed to be under the control of cAMP-bound CRP. Using the newly developed Genomic SELEX screening system of transcription factor-binding sequences, however, we have identified a total of at least 254 CRP-binding sites. Based on their location on the E. coli genome, we predict a total of at least 183 novel regulation target operons, altogether with the 195 hitherto known targets, reaching to the minimum of 378 promoters as the regulation targets of cAMP-CRP. All the promoters selected from the newly identified targets and examined by using the lacZ reporter assay were found to be under the control of CRP, indicating that the Genomic SELEX screening allowed to identify the CRP targets with high accuracy. Based on the functions of novel target genes, we conclude that CRP plays a key regulatory role in the whole processes from the selective transport of carbon sources, the glycolysis-gluconeogenesis switching to the metabolisms downstream of glycolysis, including tricarboxylic acid (TCA) cycle, pyruvate dehydrogenase (PDH) pathway and aerobic respiration. One unique regulation mode is that a single and the same CRP molecule bound within intergenic regions often regulates both of divergently transcribed operons

    Expanding the diversity of mycobacteriophages: Insights into genome architecture and evolution

    Get PDF
    Mycobacteriophages are viruses that infect mycobacterial hosts such as Mycobacterium smegmatis and Mycobacterium tuberculosis. All mycobacteriophages characterized to date are dsDNA tailed phages, and have either siphoviral or myoviral morphotypes. However, their genetic diversity is considerable, and although sixty-two genomes have been sequenced and comparatively analyzed, these likely represent only a small portion of the diversity of the mycobacteriophage population at large. Here we report the isolation, sequencing and comparative genomic analysis of 18 new mycobacteriophages isolated from geographically distinct locations within the United States. Although no clear correlation between location and genome type can be discerned, these genomes expand our knowledge of mycobacteriophage diversity and enhance our understanding of the roles of mobile elements in viral evolution. Expansion of the number of mycobacteriophages grouped within Cluster A provides insights into the basis of immune specificity in these temperate phages, and we also describe a novel example of apparent immunity theft. The isolation and genomic analysis of bacteriophages by freshman college students provides an example of an authentic research experience for novice scientists. © 2011 Hatfull et al

    Clinical anticancer drug development: targeting the cyclin-dependent kinases

    Get PDF
    Cell division involves a cyclical biochemical process composed of several step-wise reactions that have to occur once per cell cycle. Dysregulation of cell division is a hallmark of all cancers. Genetic and epigenetic mechanisms frequently result in deranged expression and/or activity of cell-cycle proteins including the cyclins, cyclin-dependent kinases (Cdks), Cdk inhibitors and checkpoint control proteins. The critical nature of these proteins in cell cycling raises hope that targeting them may result in selective cytotoxicity and valuable anticancer activity

    Structures Related to the Emplacement of Shallow-Level Intrusions

    Get PDF
    A systematic view of the vast nomenclature used to describe the structures of shallow-level intrusions is presented here. Structures are organised in four main groups, according to logical breaks in the timing of magma emplacement, independent of the scales of features: (1) Intrusion-related structures, formed as the magma is making space and then develops into its intrusion shape; (2) Magmatic flow-related structures, developed as magma moves with suspended crystals that are free to rotate; (3) Solid-state, flow-related structures that formed in portions of the intrusions affected by continuing flow of nearby magma, therefore considered to have a syn-magmatic, non-tectonic origin; (4) Thermal and fragmental structures, related to creation of space and impact on host materials. This scheme appears as a rational organisation, helpful in describing and interpreting the large variety of structures observed in shallow-level intrusions

    Borrelia burgdorferi BBK32 Inhibits the Classical Pathway by Blocking Activation of the C1 Complement Complex

    Get PDF
    Citation: Garcia, B. L., Zhi, H., Wager, B., Hook, M., & Skare, J. T. (2016). Borrelia burgdorferi BBK32 Inhibits the Classical Pathway by Blocking Activation of the C1 Complement Complex. Plos Pathogens, 12(1), 28. doi:10.1371/journal.ppat.1005404Pathogens that traffic in blood, lymphatics, or interstitial fluids must adopt strategies to evade innate immune defenses, notably the complement system. Through recruitment of host regulators of complement to their surface, many pathogens are able to escape complement-mediated attack. The Lyme disease spirochete, Borrelia burgdorferi, produces a number of surface proteins that bind to factor H related molecules, which function as the dominant negative regulator of the alternative pathway of complement. Relatively less is known about how B. burgdorferi evades the classical pathway of complement despite the observation that some sensu lato strains are sensitive to classical pathway activation. Here we report that the borrelial lipoprotein BBK32 potently and specifically inhibits the classical pathway by binding with high affinity to the initiating C1 complex of complement. In addition, B. burgdorferi cells that produce BBK32 on their surface bind to both C1 and C1r and a serum sensitive derivative of B. burgdorferi is protected from killing via the classical pathway in a BBK32-dependent manner. Subsequent biochemical and biophysical approaches localized the anti-complement activity of BBK32 to its globular C-terminal domain. Mechanistic studies reveal that BBK32 acts by entrapping C1 in its zymogen form by binding and inhibiting the C1 subcomponent, C1r, which serves as the initiating serine protease of the classical pathway. To our knowledge this is the first report of a spirochetal protein acting as a direct inhibitor of the classical pathway and is the only example of a biomolecule capable of specifically and noncovalently inhibiting C1/C1r. By identifying a unique mode of complement evasion this study greatly enhances our understanding of how pathogens subvert and potentially manipulate host innate immune systems
    corecore