39 research outputs found

    Estimating malaria transmission intensity from Plasmodium falciparum serological data using antibody density models.

    Get PDF
    BACKGROUND: Serological data are increasingly being used to monitor malaria transmission intensity and have been demonstrated to be particularly useful in areas of low transmission where traditional measures such as EIR and parasite prevalence are limited. The seroconversion rate (SCR) is usually estimated using catalytic models in which the measured antibody levels are used to categorize individuals as seropositive or seronegative. One limitation of this approach is the requirement to impose a fixed cut-off to distinguish seropositive and negative individuals. Furthermore, the continuous variation in antibody levels is ignored thereby potentially reducing the precision of the estimate. METHODS: An age-specific density model which mimics antibody acquisition and loss was developed to make full use of the information provided by serological measures of antibody levels. This was fitted to blood-stage antibody density data from 12 villages at varying transmission intensity in Northern Tanzania to estimate the exposure rate as an alternative measure of transmission intensity. RESULTS: The results show a high correlation between the exposure rate estimates obtained and the estimated SCR obtained from a catalytic model (r = 0.95) and with two derived measures of EIR (r = 0.74 and r = 0.81). Estimates of exposure rate obtained with the density model were also more precise than those derived from catalytic models. CONCLUSION: This approach, if validated across different epidemiological settings, could be a useful alternative framework for quantifying transmission intensity, which makes more complete use of serological data

    Surface Co-Expression of Two Different PfEMP1 Antigens on Single Plasmodium falciparum-Infected Erythrocytes Facilitates Binding to ICAM1 and PECAM1

    Get PDF
    The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) antigens play a major role in cytoadhesion of infected erythrocytes (IE), antigenic variation, and immunity to malaria. The current consensus on control of variant surface antigen expression is that only one PfEMP1 encoded by one var gene is expressed per cell at a time. We measured var mRNA transcript levels by real-time Q-PCR, analysed var gene transcripts by single-cell FISH and directly compared these with PfEMP1 antigen surface expression and cytoadhesion in three different antibody-selected P. falciparum 3D7 sub-lines using live confocal microscopy, flow cytometry and in vitro adhesion assays. We found that one selected parasite sub-line simultaneously expressed two different var genes as surface antigens, on single IE. Importantly, and of physiological relevance to adhesion and malaria pathogenesis, this parasite sub-line was found to bind both CD31/PECAM1 and CD54/ICAM1 and to adhere twice as efficiently to human endothelial cells, compared to infected cells having only one PfEMP1 variant on the surface. These new results on PfEMP1 antigen expression indicate that a re-evaluation of the molecular mechanisms involved in P. falciparum adhesion and of the accepted paradigm of absolutely mutually exclusive var gene transcription is required

    Alterations in the Aedes aegypti Transcriptome during Infection with West Nile, Dengue and Yellow Fever Viruses

    Get PDF
    West Nile (WNV), dengue (DENV) and yellow fever (YFV) viruses are (re)emerging, mosquito-borne flaviviruses that cause human disease and mortality worldwide. Alterations in mosquito gene expression common and unique to individual flaviviral infections are poorly understood. Here, we present a microarray analysis of the Aedes aegypti transcriptome over time during infection with DENV, WNV or YFV. We identified 203 mosquito genes that were ≥5-fold differentially up-regulated (DUR) and 202 genes that were ≥10-fold differentially down-regulated (DDR) during infection with one of the three flaviviruses. Comparative analysis revealed that the expression profile of 20 DUR genes and 15 DDR genes was quite similar between the three flaviviruses on D1 of infection, indicating a potentially conserved transcriptomic signature of flaviviral infection. Bioinformatics analysis revealed changes in expression of genes from diverse cellular processes, including ion binding, transport, metabolic processes and peptidase activity. We also demonstrate that virally-regulated gene expression is tissue-specific. The overexpression of several virally down-regulated genes decreased WNV infection in mosquito cells and Aedes aegypti mosquitoes. Among these, a pupal cuticle protein was shown to bind WNV envelope protein, leading to inhibition of infection in vitro and the prevention of lethal WNV encephalitis in mice. This work provides an extensive list of targets for controlling flaviviral infection in mosquitoes that may also be used to develop broad preventative and therapeutic measures for multiple flaviviruses

    Quantitative trait loci mapping reveals candidate pathways regulating cell cycle duration in Plasmodium falciparum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Elevated parasite biomass in the human red blood cells can lead to increased malaria morbidity. The genes and mechanisms regulating growth and development of <it>Plasmodium </it><it>falciparum </it>through its erythrocytic cycle are not well understood. We previously showed that strains HB3 and Dd2 diverge in their proliferation rates, and here use quantitative trait loci mapping in 34 progeny from a cross between these parent clones along with integrative bioinformatics to identify genetic loci and candidate genes that control divergences in cell cycle duration.</p> <p>Results</p> <p>Genetic mapping of cell cycle duration revealed a four-locus genetic model, including a major genetic effect on chromosome 12, which accounts for 75% of the inherited phenotype variation. These QTL span 165 genes, the majority of which have no predicted function based on homology. We present a method to systematically prioritize candidate genes using the extensive sequence and transcriptional information available for the parent lines. Putative functions were assigned to the prioritized genes based on protein interaction networks and expression eQTL from our earlier study. DNA metabolism or antigenic variation functional categories were enriched among our prioritized candidate genes. Genes were then analyzed to determine if they interact with cyclins or other proteins known to be involved in the regulation of cell cycle.</p> <p>Conclusions</p> <p>We show that the divergent proliferation rate between a drug resistant and drug sensitive parent clone is under genetic regulation and is segregating as a complex trait in 34 progeny. We map a major locus along with additional secondary effects, and use the wealth of genome data to identify key candidate genes. Of particular interest are a nucleosome assembly protein (PFL0185c), a Zinc finger transcription factor (PFL0465c) both on chromosome 12 and a ribosomal protein L7Ae-related on chromosome 4 (PFD0960c).</p

    Revisiting the circulation time of Plasmodium falciparum gametocytes: molecular detection methods to estimate the duration of gametocyte carriage and the effect of gametocytocidal drugs

    Get PDF
    BACKGROUND: There is renewed acknowledgement that targeting gametocytes is essential for malaria control and elimination efforts. Simple mathematical models were fitted to data from clinical trials in order to determine the mean gametocyte circulation time and duration of gametocyte carriage in treated malaria patients. METHODS: Data were used from clinical trials from East Africa. The first trial compared non-artemisinin combination therapy (non-ACT: sulphadoxine-pyrimethamine (SP) plus amodiaquine) and artemisinin-based combination therapy (ACT: SP plus artesunate (AS) or artemether-lumefantrine). The second trial compared ACT (SP+AS) with ACT in combination with a single dose of primaquine (ACT-PQ: SP+AS+PQ). Mature gametocytes were quantified in peripheral blood samples by nucleic acid sequence based amplification. A simple deterministic compartmental model was fitted to gametocyte densities to estimate the circulation time per gametocyte; a similar model was fitted to gametocyte prevalences to estimate the duration of gametocyte carriage after efficacious treatment. RESULTS: The mean circulation time of gametocytes was 4.6-6.5 days. After non-ACT treatment, patients were estimated to carry gametocytes for an average of 55 days (95% CI 28.7 - 107.7). ACT reduced the duration of gametocyte carriage fourfold to 13.4 days (95% CI 10.2-17.5). Addition of PQ to ACT resulted in a further fourfold reduction of the duration of gametocyte carriage. CONCLUSIONS: These findings confirm previous estimates of the circulation time of gametocytes, but indicate a much longer duration of (low density) gametocyte carriage after apparently successful clearance of asexual parasites. ACT shortened the period of gametocyte carriage considerably, and had the most pronounced effect on mature gametocytes when combined with PQ

    Resistance of a Rodent Malaria Parasite to a Thymidylate Synthase Inhibitor Induces an Apoptotic Parasite Death and Imposes a Huge Cost of Fitness

    Get PDF
    BACKGROUND: The greatest impediment to effective malaria control is drug resistance in Plasmodium falciparum, and thus understanding how resistance impacts on the parasite's fitness and pathogenicity may aid in malaria control strategy. METHODOLOGY/PRINCIPAL FINDINGS: To generate resistance, P. berghei NK65 was subjected to 5-fluoroorotate (FOA, an inhibitor of thymidylate synthase, TS) pressure in mice. After 15 generations of drug pressure, the 2% DT (the delay time for proliferation of parasites to 2% parasitaemia, relative to untreated wild-type controls) reduced from 8 days to 4, equalling the controls. Drug sensitivity studies confirmed that FOA-resistance was stable. During serial passaging in the absence of drug, resistant parasite maintained low growth rates (parasitaemia, 15.5%±2.9, 7 dpi) relative to the wild-type (45.6%±8.4), translating into resistance cost of fitness of 66.0%. The resistant parasite showed an apoptosis-like death, as confirmed by light and transmission electron microscopy and corroborated by oligonucleosomal DNA fragmentation. CONCLUSIONS/SIGNIFICANCE: The resistant parasite was less fit than the wild-type, which implies that in the absence of drug pressure in the field, the wild-type alleles may expand and allow drugs withdrawn due to resistance to be reintroduced. FOA resistance led to depleted dTTP pools, causing thymineless parasite death via apoptosis. This supports the tenet that unicellular eukaryotes, like metazoans, also undergo apoptosis. This is the first report where resistance to a chemical stimulus and not the stimulus itself is shown to induce apoptosis in a unicellular parasite. This finding is relevant in cancer therapy, since thymineless cell death induced by resistance to TS-inhibitors can further be optimized via inhibition of pyrimidine salvage enzymes, thus providing a synergistic impact. We conclude that since apoptosis is a process that can be pharmacologically modulated, the parasite's apoptotic machinery may be exploited as a novel drug target in malaria and other protozoan diseases of medical importance

    Faith and Fair Trade: The Moderating Role of Contextual Religious Salience

    Get PDF
    Normative and historical arguments support the idea that religion potentially shapes decisions to support fair trade products. That said, the question of how religion influences organizational decision-makers to purchase fair trade products in a business-to-business context has remained largely unaddressed. This research examines the interactive effect of individual religious commitment and contextual religious salience on an individual's willingness to pay a price premium for a fair trade product, when buying on behalf of an organization. Findings from two experimental studies (involving 75 and 87 working individuals, respectively) reveal that the effect of a decision-maker's religious commitment on his or her willingness to pay a price premium, for the purchase of a fair trade product on behalf of an organization, is moderated by the contextual salience of religion. Specifically, when religion is highly salient in the organizational context, religious commitment is positively related to the decision-maker's willingness to pay a premium for the fair trade product; when contextual religious salience is low, religious commitment and willingness to pay a premium are unrelated. Implications for theory and practice are presented. © 2013 Springer Science+Business Media Dordrecht

    Structural insight into the mechanism of activation of the Toll receptor by the dimeric ligand Spatzle.

    No full text
    The Drosophila Toll receptor, which functions in both embryonic patterning and innate immunity to fungi and Gram-positive bacteria, is activated by a dimeric cytokine ligand, Spätzle (Spz). Previous studies have suggested that one Spz cross-links two Toll receptor molecules to form an activated complex. Here we report electron microscopy structures of the Toll ectodomain in the absence and presence of Spz. Contrary to expectations, Spz does not directly cross-link two Toll ectodomains. Instead, Spz binding at the N-terminal end of Toll predominantly induces the formation of a 2:2 complex, with two sites of interaction between the ectodomain chains, one located near to the N terminus of the solenoid and the other between the C-terminal juxtamembrane sequences. Moreover, Toll undergoes a ligand-induced conformational change, becoming more tightly curved than in the apo form. The unexpected 2:2 complex was confirmed by mass spectrometry under native conditions. These results suggest that activation of Toll is an allosteric mechanism induced by an end-on binding mode of its ligand Spz
    corecore