912 research outputs found
Symmetryless Dark Matter
It is appealing to stabilize dark matter by the same discrete symmetry that
is used to explain the structure of quark and lepton mass matrices. However, to
generate the observed fermion mixing patterns, any flavor symmetry must
necessarily be broken, rendering dark matter unstable. We study singlet,
doublet and triplet SU(2) multiplets of both scalar and fermion dark matter
candidates and enumerate the conditions under which no d < 6 dark matter decay
operators are generated even in the case if the flavor symmetry is broken to
nothing. We show that the VEVs of flavon scalars transforming as higher
multiplets (e.g. triplets) of the flavor group must be at the electroweak
scale. The most economical way for that is to use SM Higgs boson(s) as flavons.
Such models can be tested by the LHC experiments. This scenario requires the
existence of additional Froggatt-Nielsen scalars that generate hierarchies in
Yukawa couplings. We study the conditions under which large and small flavor
breaking parameters can coexist without destabilizing the dark matter.Comment: 8 pages, no figure
Elemental analysis of particulate matter by X-ray fluorescence methods: A green approach to air quality monitoring
This review explores X-ray fluorescence (XRF) spectrometry for elemental analysis of particulate matter (PM) for
air quality monitoring. The introduction presents PM classification based on size and composition, covering
various elemental analysis methods while highlighting the increasing interest in XRF due to its non-destructive,
rapid, and green features. The fundamental concepts of XRF and the experimental configurations commonly used
are discussed, focusing on Energy Dispersive X-Ray Fluorescence (EDXRF) and Total Reflection X-Ray Fluorescence
(TXRF). PM sampling devices and substrate are described, with a specific emphasis on filtering membranes
for EDXRF and reflecting substrates for TXRF. Sample preparation strategies and procedures are presented.
Qualitative and quantitative analysis is described, with a particular focus on the calibration approaches implemented for PM. Finally, the challenges faced by XRF in becoming a recognized reliable analytical technique for PM analysis, comparable to other standardized techniques for PM filters analysis, while capitalizing on its green advantages
The Casimir force on a surface with shallow nanoscale corrugations: Geometry and finite conductivity effects
We measure the Casimir force between a gold sphere and a silicon plate with
nanoscale, rectangular corrugations with depth comparable to the separation
between the surfaces. In the proximity force approximation (PFA), both the top
and bottom surfaces of the corrugations contribute to the force, leading to a
distance dependence that is distinct from a flat surface. The measured Casimir
force is found to deviate from the PFA by up to 15%, in good agreement with
calculations based on scattering theory that includes both geometry effects and
the optical properties of the material
Can multistate dark matter annihilation explain the high-energy cosmic ray lepton anomalies?
Multistate dark matter (DM) models with small mass splittings and couplings
to light hidden sector bosons have been proposed as an explanation for the
PAMELA/Fermi/H.E.S.S. high-energy lepton excesses. We investigate this proposal
over a wide range of DM density profiles, in the framework of concrete models
with doublet or triplet dark matter and a hidden SU(2) gauge sector that mixes
with standard model hypercharge. The gauge coupling is bounded from below by
the DM relic density, and the Sommerfeld enhancement factor is explicitly
computable for given values of the DM and gauge boson masses M, mu and the
(largest) dark matter mass splitting delta M_{12}. Sommerfeld enhancement is
stronger at the galactic center than near the Sun because of the radial
dependence of the DM velocity profile, which strengthens the inverse Compton
(IC) gamma ray constraints relative to usual assumptions. We find that the
PAMELA/Fermi/H.E.S.S. lepton excesses are marginally compatible with the model
predictions, and with CMB and Fermi gamma ray constraints, for M ~ 800 GeV, mu
~ 200 MeV, and a dark matter profile with noncuspy Einasto parameters alpha >
0.20, r_s ~ 30 kpc. We also find that the annihilating DM must provide only a
subdominant (< 0.4) component of the total DM mass density, since otherwise the
boost factor due to Sommerfeld enhancement is too large.Comment: 20 pages, 12 figures; v2: Corrected branching ratio for ground state
DM annihilations into leptons, leading to boost factors that are larger than
allowed. Added explicit results for doublet DM model. Some conclusions
changed; main conclusion of tension between inverse Compton constraints and
N-body simulations of halo profiles is unchange
Dark Matter's secret liaisons: Phenomenology of a dark U(1) sector with bound states
Dark matter (DM) charged under a dark U(1) force appears in many extensions of the Standard Model, and has been invoked to explain anomalies in cosmic-ray data, as well as a self-interacting DM candidate. In this paper, we perform a comprehensive phenomenological analysis of such a model, assuming that the DM abundance arises from the thermal freeze-out of the dark interactions. We include, for the first time, bound-state effects both in the DM production and in the indirect detection signals, and quantify their importance for Fermi, Ams-02, and CMB experiments. We find that DM in the mass range 1 GeV to 100TeV, annihilating into dark photons of MeV to GeV mass, is in conict with observations. Instead, DM annihilation into heavier dark photons is viable. We point out that the late decays of multi-GeV dark photons can produce significant entropy and thus dilute the DM density. This can lower considerably the dark coupling needed to obtain the DM abundance, and in turn relax the existing constraints
Gamma ray tests of Minimal Dark Matter
We reconsider the model of Minimal Dark Matter (a fermionic, hypercharge-less quintuplet of the EW interactions) and compute its gamma ray signatures. We compare them with a number of gamma ray probes: the galactic halo diffuse measurements, the galactic center line searches and recent dwarf galaxies observations. We find that the original minimal model, whose mass is fixed at 9.4 TeV by the relic abundance requirement, is constrained by the line searches from the Galactic Center: it is ruled out if the Milky Way possesses a cuspy profile such as NFW but it is still allowed if it has a cored one. Observations of dwarf spheroidal galaxies are also relevant (in particular searches for lines), and ongoing astrophysical progresses on these systems have the potential to eventually rule out the model. We also explore a wider mass range, which applies to the case in which the relic abundance requirement is relaxed. Most of our results can be safely extended to the larger class of multi-TeV WIMP DM annihilating into massive gauge bosons
Tumour necrosis factor-α mediates blood—brain barrier damage in HIV-1 infection of the central nervous system
The pathogenesis of brain inflammation and damage by human immunodeficiency virus (HIV) infection is unclear. Because blood–brain barrier damage and impaired cerebral perfusion are common features of HIV-1 infection, we evaluated the role of tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in mediating disruption of the blood–brain barrier. Levels of TNF-α were more elevated in cerebrospinal fluid (CSF) than in serum of HIV-1 infected patients and were mainly detected in those patients who had neurologic involvement. Intrathecal TNF-α levels correlated with signs of blood–brain barrier damage, manifested by high CSF to serum albumin quotient, and with the degree of barrier impairment. In contrast, intrathecal IL-1β levels did not correlate with blood-brain barrier damage in HIV-1 infected patients. TNF-α seems to be related to active neural inflammation and to blood–brain barrier damage. The proinflammatory effects of TNF-α in the nervous system are dissociated from those of IL-1β
Geometrical Description of Quantum Mechanics - Transformations and Dynamics
In this paper we review a proposed geometrical formulation of quantum
mechanics. We argue that this geometrization makes available mathematical
methods from classical mechanics to the quantum frame work. We apply this
formulation to the study of separability and entanglement for states of
composite quantum systems.Comment: 22 pages, to be published in Physica Script
Geometrization of Quantum Mechanics
We show that it is possible to represent various descriptions of Quantum
Mechanics in geometrical terms. In particular we start with the space of
observables and use the momentum map associated with the unitary group to
provide an unified geometrical description for the different pictures of
Quantum Mechanics. This construction provides an alternative to the usual GNS
construction for pure states.Comment: 16 pages. To appear in Theor. Math. Phys. Some typos corrected.
Definition 2 in page 5 rewritte
Displaced Higgs production in type III seesaw
We point out that the type III seesaw mechanism introducing fermion triplets
predicts peculiar Higgs boson signatures of displaced vertices with two b jets
and one or two charged particles which can be cleanly identified. In a
supersymmetric theory, the scalar partner of the fermion triplet contains a
neutral dark matter candidate which is almost degenerate with its charged
components. A Higgs boson can be produced together with such a dark matter
triplet in the cascade decay chain of a strongly produced squark or gluino.
When the next lightest supersymmetric particle (NLSP) is bino/wino-like, there
appears a Higgs boson associated with two charged tracks of a charged lepton
and a heavy charged scalar at a displacement larger than about 1 mm. The
corresponding production cross-section is about 0.5 fb for the squark/gluino
mass of 1 TeV. In the case of the stau NLSP, it decays mainly to a Higgs boson
and a heavy charged scalar whose decay length is larger than 0.1 mm for the
stau NLSP mixing with the left-handed stau smaller than 0.3. As this process
can have a large cascade production pb for the squark/gluino mass
TeV, one may be able to probe it at the early stage of the LHC
experiment.Comment: 10 pages, 5 figure
- …