23 research outputs found

    Emerging pharmacotherapy for cancer patients with cognitive dysfunction

    Get PDF
    Advances in the diagnosis and multi-modality treatment of cancer have increased survival rates for many cancer types leading to an increasing load of long-term sequelae of therapy, including that of cognitive dysfunction. The cytotoxic nature of chemotherapeutic agents may also reduce neurogenesis, a key component of the physiology of memory and cognition, with ramifications for the patient's mood and other cognition disorders. Similarly radiotherapy employed as a therapeutic or prophylactic tool in the treatment of primary or metastatic disease may significantly affect cognition. A number of emerging pharmacotherapies are under investigation for the treatment of cognitive dysfunction experienced by cancer patients. Recent data from clinical trials is reviewed involving the stimulants modafinil and methylphenidate, mood stabiliser lithium, anti-Alzheimer's drugs memantine and donepezil, as well as other agents which are currently being explored within dementia, animal, and cell culture models to evaluate their use in treating cognitive dysfunction

    Hypoxic preconditioning in neonatal rat brain involves regulation of excitatory amino acid transporter 2 and estrogen receptor alpha

    No full text
    Exposure of the brain to a sublethal insult can protect against a subsequent brain injury. Hypoxic preconditioning induces tolerance to hypoxic–ischemic injury in neonatal rat brain and is associated with changes in gene and protein expression. To study the involvement of excitatory amino acid transporters (EAAT1 and EAAT2) and estrogen receptors (ERα and ERÎČ) in neonatal hypoxia-induced ischemic tolerance, we examined changes in expression of these proteins in the cortex, hippocampus and striatum of newborn rats at different time points after exposure to sublethal hypoxia (8% O2, 3 h). Preconditioning with hypoxia 24 h before hypoxia–ischemia afforded marked brain protection compared with littermate control animals as determined by morphological assessment. Immunoblot analysis showed that EAAT2 and ERα were significantly increased by 55% and 49%, respectively, in cortex at 24 h after hypoxic-preconditioning. Surprisingly, at the same time point, a significant decrease of EAAT2 by 48% in striatum was observed. In contrast, hypoxic preconditioning had no effect on the levels of EAAT1 and ERÎČ in any of the brain regions studied at any of the time points analyzed. The similar pattern of changes in EAAT2 and ERα levels suggests that ERα might interact with EAAT2 in producing preconditioning. The endogenous molecular mechanisms modulated by hypoxia preconditioning may contribute to the development of hypoxia-induced ischemic tolerance, and may provide novel therapeutic targets for the treatment of cerebral ischemia
    corecore