591 research outputs found

    Adenosine signaling in airways: Toward a promising antiasthmatic approach

    Get PDF
    Adenosine participates to asthma physiopathology by signaling through more than just one receptor subtype. Defining the role of each receptor is complicated by evidence that often results obtained on rodents do not coincide with human studies, but what emerges is that an important condition to establish hyperresponsiveness to adenosine in any species of sensitized animals is the exposure to allergen; this feature appears to be very similar to the human situation, since allergic humans regularly undergo exposure to allergen. Furthermore, A2B in humans, but A3 receptor in rodents, would mediate, indirectly, the bronchoconstriction in response to adenosine and would play the main role in adenosine-induced airway inflammation and airway hyperreactivity. On the other hand, A1 receptor over-expressed on asthmatic airways would mediate a direct adenosine bronchoconstrictor effect. Antagonists and agonists to adenosine receptors have been considered as antiasthmatic drugs but often their development has been limited by unwanted effects. Preventing adenosine accumulation in airways should be considered as a novel promising antiasthmatic strategy

    Thrombo-Inflammation: A Focus on NTPDase1/CD39

    Get PDF
    There is increasing evidence for a link between inflammation and thrombosis. Following tissue injury, vascular endothelium becomes activated, losing its antithrombotic properties whereas inflammatory mediators build up a prothrombotic environment. Platelets are the first elements to be activated following endothelial damage; they participate in physiological haemostasis, but also in inflammatory and thrombotic events occurring in an injured tissue. While physiological haemostasis develops rapidly to prevent excessive blood loss in the endothelium activated by inflammation, hypoxia or by altered blood flow, thrombosis develops slowly. Activated platelets release the content of their granules, including ATP and ADP released from their dense granules. Ectonucleoside triphosphate diphosphohydrolase-1 (NTPDase1)/CD39 dephosphorylates ATP to ADP and to AMP, which in turn, is hydrolysed to adenosine by ecto-50 -nucleotidase (CD73). NTPDase1/CD39 has emerged has an important molecule in the vasculature and on platelet surfaces; it limits thrombotic events and contributes to maintain the antithrombotic properties of endothelium. The aim of the present review is to provide an overview of platelets as cellular elements interfacing haemostasis and inflammation, with a particular focus on the emerging role of NTPDase1/CD39 in controlling both processes

    Bindarit inhibits human coronary artery smooth muscle cell proliferation, migration and phenotypic switching

    Get PDF
    Bindarit, a selective inhibitor of monocyte chemotactic proteins (MCPs) synthesis, reduces neointimal formation in animal models of vascular injury and recently has been shown to inhibit in-stent late loss in a placebo-controlled phase II clinical trial. However, the mechanisms underlying the efficacy of bindarit in controlling neointimal formation/restenosis have not been fully elucidated. Therefore, we investigated the effect of bindarit on human coronary smooth muscle cells activation, drawing attention to the phenotypic modulation process, focusing on contractile proteins expression as well as proliferation and migration. The expression of contractile proteins was evaluated by western blot analysis on cultured human coronary smooth muscle cells stimulated with TNF-α (30 ng/mL) or fetal bovine serum (5%). Bindarit (100-300 µM) reduced the embryonic form of smooth muscle myosin heavy chain while increased smooth muscle α-actin and calponin in both TNF-α- and fetal bovine serum-stimulated cells. These effects were associated with the inhibition of human coronary smooth muscle cell proliferation/migration and both MCP-1 and MCP-3 production. The effect of bindarit on smooth muscle cells phenotypic switching was confirmed in vivo in the rat balloon angioplasty model. Bindarit (200 mg/Kg/day) significantly reduced the expression of the embryonic form of smooth muscle myosin heavy chain, and increased smooth muscle α-actin and calponin in the rat carodid arteries subjected to endothelial denudation. Our results demonstrate that bindarit induces the differentiated state of human coronary smooth muscle cells, suggesting a novel underlying mechanisms by which this drug inhibits neointimal formation

    Platelet Antiaggregating Activity and Chemical Constituents of Salvia x Jamensis J. Compton

    Get PDF
    A phytochemical study has been carried out on the surface exudate of Salvia x jamensis, which showed a significant platelet antiaggregating activity. The known compounds isopimaric acid (2), 14-α-hydroxy-isopimaric acid (3), 3β-hydroxy-isopimaric acid (4), 7,8β-dihydrosalviacoccin (5), betulinic acid (6), and ursolic acid (7) were isolated together with the new diterpene 1. The structure of 1 was determined as 15,16-epoxy-cleroda-3-en-7α,10β-dihydroxy-12,17;19,18-diolide on the basis of spectroscopic data analysis. Among all tested compounds, 2 showed a significant concentration-dependent antiaggregating activity when ADP (3 μM) was used as agonist on rat platelets. Conversely, 1 increased ADP–induced platelet aggregation

    Inhibition of CD73 improves B cell-mediated anti-tumor immunity in a mouse model of melanoma.

    Get PDF
    CD73 is a cell surface enzyme that suppresses T cell-mediated immune responses by producing extracellular adenosine. Growing evidence suggests that targeting CD73 in cancer may be useful for an effective therapeutic outcome. In this study, we demonstrate that administration of a specific CD73 inhibitor, adenosine 5'-(α,β-methylene)diphosphate (APCP), to melanoma-bearing mice induced a significant tumor regression by promoting the release of Th1- and Th17-associated cytokines in the tumor microenvironment. CD8+ T cells were increased in melanoma tissue of APCP-treated mice. Accordingly, in nude mice APCP failed to reduce tumor growth. Importantly, we observed that after APCP administration, the presence of B cells in the melanoma tissue was greater than that observed in control mice. This was associated with production of IgG2b within the melanoma. Depletion of CD20+ B cells partially blocked the anti-tumor effect of APCP and significantly reduced the production of IgG2b induced by APCP, implying a critical role for B cells in the anti-tumor activity of APCP. Our results also suggest that APCP could influence B cell activity to produce IgG through IL-17A, which significantly increased in the tumor tissue of APCP-treated mice. In support of this, we found that in melanoma-bearing mice receiving anti-IL-17A mAb, the anti-tumor effect of APCP was ablated. This correlated with a reduced capacity of APCP-treated mice to mount an effective immune response against melanoma, as neutralization of this cytokine significantly affected both the CD8+ T cell- and B cell-mediated responses. In conclusion, we demonstrate that both T cells and B cells play a pivotal role in the APCP-induced anti-tumor immune response

    Lack of Ecto-5'-Nucleotidase Protects Sensitized Mice against Allergen Challenge

    Get PDF
    Ecto-5'-nucleotidase (CD73), the ectoenzyme that together with CD39 is responsible for extracellular ATP hydrolysis and adenosine accumulation, regulates immune/inflammatory processes by controlling innate and acquired immunity cell functions. We previously demonstrated that CD73 is required for the assessment of a controlled allergic sensitization, in mice. Here, we evaluated the response to aerosolized allergen of female-sensitized mice lacking CD73 in comparison with their wild type counterpart. Results obtained show, in mice lacking CD73, the absence of airway hyperreactivity in response to an allergen challenge, paralleled by reduced airway CD23+B cells and IL4+T cells pulmonary accumulation together with reduced mast cells accumulation and degranulation. Our findings indicate CD73 as a potential therapeutic target for allergic asthma

    First evidence for an anxiolitic effect of a diterpenoid from Salvia cinnabarina

    No full text
    The potential anxiolytic and anti-depressive activity of CMP1 was studied in the elevated plus-maze test and in the forced swimming test. Furthermore, CMP1 sedative activity was evaluated in pentobarbital treated animals; the effect of CMP1 on spontaneous motor activity (total locomotion) was also evaluated. Our data show that CMP1, at doses that did not affect locomotion, was able to induce anxiolytic and sedative, but not anti-depressive effects. In conclusion, our results represent first evidence for an anxiolytic activity of this diterpenoid from Salvia cinnabarina

    Peptide-modified liposomes for selective targeting of bombesin receptors overexpressed by cancer cells: a potential theranostic agent.

    Get PDF
    OBJECTIVES: Drug delivery systems consisting of liposomes displaying a cell surface receptor-targeting peptide are being developed to specifically deliver chemotherapeutic drugs to tumors overexpressing a target receptor. This study addresses novel liposome composition approaches to specifically target tissues overexpressing bombesin (BN) receptors. METHODS: A new amphiphilic peptide derivative (MonY-BN) containing the BN(7-14) peptide, the DTPA (diethylenetriaminepentaacetate) chelating agent, a hydrophobic moiety with two C(18) alkyl chains, and polyethylene glycol spacers, has been synthesized by solid-phase methods. Liposomes have been generated by co-aggregation of MonY-BN with 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC). The structural and biological properties of these new target-selective drug-delivery systems have been characterized. RESULTS: Liposomes with a DSPC/MonY-BN (97/3 molar ratio) composition showed a diameter of 145.5 ± 31.5 nm and a polydispersity index of 0.20 ± 0.05. High doxorubicin (Dox) loading was obtained with the remote pH gradient method using citrate as the inner buffer. Specific binding to PC-3 cells of DSPC/MonY-BN liposomes was obtained (2.7% ± 0.3%, at 37°C), compared with peptide-free DSPC liposomes (1.4% ± 0.2% at 37°C). Incubation of cells with DSPC/ MonY-BN/Dox showed significantly lower cell survival compared with DSPC/Dox-treated cells, in the presence of 100 ng/mL and 300 ng/mL drug amounts, in cytotoxicity experiments. Intravenous treatment of PC-3 xenograft-bearing mice with DSPC/MonY-BN/Dox at 10 mg/kg Dox dose produced higher tumour growth inhibition (60%) compared with nonspecific DSPC/ Dox liposomes (36%) relative to control animals. CONCLUSION: The structural and loading properties of DSPC/MonY-BN liposomes along with the observed in-vitro and in-vivo activity are encouraging for further development of this approach for target-specific cancer chemotherapy

    Diabetic mouse angiopathy is linked to progressive sympathetic receptor deletion coupled to an enhanced caveolin-1 expression.

    Get PDF
    OBJECTIVE: Clinical studies have demonstrated that hyperglycaemia represents a major risk factor in the development of the endothelial impairment in diabetes, which is the first step in vascular dysfunction. Using non-obese diabetic mice, we have evaluated the role of the adrenergic system and eNOS on progression of the disease METHODS AND RESULTS: When glycosuria is high (20 to 500 mg/dL), there is a selective reduction in the response to alpha1 and beta2 agonists but not to dopamine or serotonin. When glycosuria is severe (500 to 1000 mg/dL), there is a complete ablation of the contracture response to the alpha1 receptor agonist stimulation and a marked reduced response to beta2 agonist stimulation. This effect is coupled with a reduced expression of alpha1 and beta2 receptors, which is caused by an inhibition at transcriptional level as demonstrated by RT-PCR. In the severe glycosuria (500 to 1000 mg/dL), although eNOS expression is unchanged, caveolin-1 expression is significantly enhanced, indicating that high glucose plasma levels cause an upregulation of the eNOS endogenous inhibitory tone. These latter results correlate with functional data showing that in severe glycosuria, there is a significant reduction in acetylcholine-induced vasodilatation. CONCLUSIONS: Our results show that in diabetes development, there is a progressive selective downregulation of the alpha1 and beta2 receptors. At the same time, there is an increased expression of caveolin-1, the endogenous eNOS inhibitory protein. Thus, caveolin-1 could represent a new possible therapeutic target in vascular impairment associated with diabetes

    Salvinorin A Inhibits Airway Hyperreactivity Induced by Ovalbumin Sensitization

    Get PDF
    Salvinorin A, a neoclerodane diterpene isolated from Salvia divinorum, exerts a number of pharmacological actions which are not solely limited to the central nervous system. Recently it has been demonstrated that Salvinorin A inhibits acute inflammatory response affecting leukotriene (LT) production. Since LTs are potent lipid mediators implicated in allergic diseases, we evaluated the effect of Salvinorin A on allergic inflammation and on airways following sensitization in the mouse. Mice were sensitized with s.c. injection of ovalbumin (OVA) on days 1 and 8. Sensitized mice received on days 9 and 12 on the shaved dorsal surface air administration to induce the development of the air-pouches. On day 15 animals were challenged by injection of OVA into the air-pouch. Salvinorin A, administered (10 mg/kg) before each allergen exposure, significantly reduced OVA-induced LT increase in the air pouch. This effect was coupled to a reduction in cell recruitment and Th2 cytokine production. In another set of experiments, mice were sensitized with OVA and both bronchial reactivity and pulmonary inflammation were assessed. Salvinorin A abrogated bronchial hyperreactivity and interleukin (IL)-13 production, without effect on pulmonary inflammation. Indeed cell infiltration and peribronchial edema were still present following diterpenoid treatment. Similarly, pulmonary IL-4 and plasmatic IgE levels were not modulated. Conversely, Salvinorin A significantly reduced LTC4 production in the lung of sensitized mice. Finally mast cell activity was evaluated by means of toluidine blue staining. Data obtained evidenced that Salvinorin A significantly inhibited mast cell degranulation in the lung. Our study demonstrates that Salvinorin A inhibits airway hyperreactivity induced by sensitization by inhibition of LT production and mast cell degranulation. In conclusion Salvinorin A could represent a promising candidate for drug development in allergic diseases such as asthma
    • …
    corecore