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a b s t r a c t

Adenosine participates to asthma physiopathology by signaling through more than just one receptor
subtype. Defining the role of each receptor is complicated by evidence that often results obtained on
rodents do not coincide with human studies, but what emerges is that an important condition to
establish hyperresponsiveness to adenosine in any species of sensitized animals is the exposure to
allergen; this feature appears to be very similar to the human situation, since allergic humans regularly
undergo exposure to allergen. Furthermore, A2B in humans, but A3 receptor in rodents, would mediate,
indirectly, the bronchoconstriction in response to adenosine and would play the main role in adenosine-
induced airway inflammation and airway hyperreactivity. On the other hand, A1 receptor over-expressed
on asthmatic airways would mediate a direct adenosine bronchoconstrictor effect. Antagonists and
agonists to adenosine receptors have been considered as antiasthmatic drugs but often their develop-
ment has been limited by unwanted effects. Preventing adenosine accumulation in airways should be
considered as a novel promising antiasthmatic strategy.

& 2013 Elsevier B.V. All rights reserved.
1. Adenosine signaling in inflammation

Adenosine is a nucleoside always present both within and
outside cells in nanomolar concentration (10–100 nM) under
physiological conditions, deriving by the breakdown of adenine
nucleotides. Physiologically, adenosine concentrations are con-
stant and finely regulated by cellular re-uptake, conversion to
inosine, phosphorylation to AMP. Conversely, following trauma or
cellular stress, such as during hypoxia, ischemia or inflammation,
its levels increase rapidly following ATP degradation, and may rise
up to 100 mM (Fredholm, 2007).

Two ecto – enzymes, the nucleoside triphosphate diphospho-
hydrolases (NTPDase1; CD39) and ecto 5' nucleotidase (CD73) that
are extracellular membrane bound enzymes are involved in the
adenine nucleotides (ATP, ADP and AMP) breakdown and the
following extracellular adenosine accumulation; their activity
and/or cellular expression may vary following tissue injury
(Longhi et al., 2013; Zimmermann, 2000).

Extracellular adenosine accumulation represents an early endo-
genous signal controlling inflammation and immune responses
through the interaction with four cell surface G-protein coupled
receptors, indicated as A1, A2A, A2B and A3. Although binding the
same agonist, adenosine receptors differ in several aspects,
ll rights reserved.
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including their expression profile in different cell types, under
physiological or pathological conditions; the identity of the G –

proteins to which they are coupled; their affinity for the agonist
and their sensitivity to phosphorylation. All these factors com-
bined determine the extent, the duration and the outcome of
cellular exposure to adenosine and, in the end, dictate the nature
of the response to adenosine tissue accumulation that may be
beneficial or detrimental (Bours et al., 2006). A1, A2A and A3

receptors have the highest affinity being activated by physiological
adenosine concentrations (EC50 0.01–1 mM), lower than those
required for the lowest affinity receptor A2B (EC50 24 mM) that
are likely reached only in a pathological environment. Nonethe-
less, besides receptor affinity, and thus adenosine concentration,
response to adenosine depend also upon the relative expression of
each receptor on a given tissue that may vary under pathological
circumstances (Fredholm, 2010; Hua et al., 2011; Morello et al.,
2006).

Evidence suggests that adenosine accumulation in an inflamed
tissue might be a crucial signal able to activate and/or to sustain a
chronic inflammation; in this respect, it would play a role in
disease development since its ability to function as a paracrine
mediator of the inflammatory response.

On the other hand, adenosine accumulation in an inflamed site
has also been suggested to be part of endogenous immunosup-
pressive mechanisms acting to preserve host defense and tissue
integrity; thus, in this respect it would play as a brake to limit
tissue damage. However, it is now assumed that tissue adenosine

www.sciencedirect.com/science/journal/00142999
www.elsevier.com/locate/ejphar
http://dx.doi.org/10.1016/j.ejphar.2013.06.033
http://dx.doi.org/10.1016/j.ejphar.2013.06.033
http://dx.doi.org/10.1016/j.ejphar.2013.06.033
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.ejphar.2013.06.033&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.ejphar.2013.06.033&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.ejphar.2013.06.033&domain=pdf
mailto:cicala@unina.it
http://dx.doi.org/10.1016/j.ejphar.2013.06.033


C. Cicala, A. Ialenti / European Journal of Pharmacology 714 (2013) 522–525 523
accumulation may play a double role, beneficial or detrimental,
depending on its concentrations in the milieu and on the persis-
tence of its high concentrations; as well as on tissue physio-
pathological conditions and on receptor subtype activated (Bours
et al., 2006). In airways, the concept of this double role of
adenosine may be exemplified by taking into account two impor-
tant experimental findings: one is that mice lacking CD39 or CD73,
enzymes that are rate limiting for extracellular adenosine genera-
tion, are more susceptible to acute lung injury following mechan-
ical ventilation (Eckle et al., 2007). On the other hand, mice
deficient of adenosine deaminase (ADA), the enzyme that cause
adenosine deamination to inosine, develop chronic pulmonary
inflammation and airway obstruction (Blackburn et al., 2000).
Thus, failure of the pathway leading to extracellular adenosine
generation increases vulnerability to acute injury, while an exces-
sive extracellular adenosine accumulation, such as in ADA defi-
cient mice, causes chronic injury. Ultimately, moderate and short
lasting increased levels of extracellular adenosine may function as
a natural endogenous protective pathway, while strongly high and
long lasting extracellular adenosine tissue levels may contribute to
the extent of the inflammatory tissue damage (Haskó et al., 2008).
2. Adenosine and asthma

Bronchial asthma represents a chronic inflammatory disorder,
characterized by airway hyperreactivity, inflammation and
obstruction. Several inflammatory cells and mediators contribute
to establish asthma symptoms and the progressive loss of airway
functionality; however, the etiopathogenesis of the disease is
unknown neither it has been established the type nor signaling
molecules that govern the chronic nature of inflammation
(Holgate, 2011).

There is much evidence that adenosine plays a role in bronchial
asthma. First, Cushley et al. (1983) demonstrated that inhaled
adenosine caused bronchoconstriction in asthmatics, allergic and
non-allergic, but not in healthy subjects. Successively, it was
shown that circulating adenosine levels increased in asthmatics
following bronchoprovocation with allergen. Moreover, elevated
levels of adenosine were also found in their bronchoalveolar
lavage fluids (BALFs) (Driver et al., 1993; Mann et al., 1986).

Interestingly, in humans, bronchial sensitivity to adenosine has
been shown to reflect allergic asthma and bronchial inflammation
better than the sensitivity to other agents, such as methacholine.
Such evidence has led to hypothesize that adenosine bronchopro-
vocation would be a diagnostically valuable test to differentiate
asthma from other airway diseases, such as chronic obstructive
pulmonary disease (COPD) (De Meer et al., 2002; Manso et al.,
2011;Polosa and Holgate, 1997).

All adenosine receptor subtypes are expressed on human air-
ways, either on stromal, resident or on recruited immune cells and
all subtypes have been described to be involved in bronchial
asthma; however, the contribute of each of them remains to be
clarified (Wilson et al., 2009).

Clinical observations first suggested mast cell involvement in
adenosine-induced bronchoconstriction, since following adeno-
sine bronchoprovocation in humans, plasma histamine levels
increased and the effect was abolished by both terfenadine and
cromolyn sodium (Driver et al., 1991,1993; Phillips and Holgate,
1989; Phillips et al., 1989). However, adenosine was shown not to
be able by itself to stimulate histamine release from mast cells but
to increase histamine release from already “primed” mast cells
(Hughes et al., 1984; Peachell et al., 1988). Such evidence well
justify why only asthmatic subjects are responsive to adenosine,
inasmuch as mast cells in asthmatic airways are phenotypically
altered under the influence of Th2-cell derived cytokines and,
likely, “primed” (Boyce, 2003).

Thus, bronchial response to adenosine in humans have initially
been attributed to an indirect mechanism, involving mast cell
activation, probably via A2B receptor, and the release of mediators
contributing either to acute or chronic symptoms of asthma
(Feoktistov and Biaggioni, 1995; Forsythe and Ennis, 1999). On
the contrary, A3 and A2A receptors on human cultured mast cells,
isolated from umbilical cord blood, have shown to be protective,
by inhibiting activation and mediator release (Suzuki et al., 1998).
Recently, an in vitro study performed on primary human cultured
mast cells (HCMC) isolated from adult peripheral blood that better
resemble human tissue mast cells demonstrates that A1 receptor
increases histamine release from sensitized HCMC challenged with
anti-IgE, while A2B receptor plays an inhibitory role (Yip et al.,
2011). The discrepancy among these studies may be attributed to
an intrinsic difference in cultured mast cells obtained from
different sources. Hua et al. (2011) have demonstrated that
adenosine potentiates degranulation in response to anti-IgE of
human umbilical cord blood mast cells previously incubated with
IL-4 and Ig-E. The effect is paralleled by the increased expression
of A2B and the down-regulation of A2A receptor. This finding
outlines the importance of the inflammatory milieu to obtain
mast cells sensitive to adenosine.

Different data have been obtained in experimental animals;
indeed, in mice it has been shown that A3 mediates mast cell
activation (Tilley et al., 2003; Zhong et al., 2003), while A2B and
A2A inhibit mast cell degranulation and cytokine production
respectively (Hua et al., 2007, 2013).

In any respect, the indirect mechanism mast-cell mediated
cannot account for the specific sensitivity to adenosine of human
asthmatic airways observed either in vivo or in vitro (Bjorck et al.,
1992; Cushley et al., 1983). Likely, adenosine signaling through A2B

receptor, which is widely distributed in airways, plays a major role
in asthma development by promoting up-regulation of pro-
inflammatory cytokines (Ryzhov et al., 2004; Zaynagetdinov
et al., 2010; Zhou et al., 2009). This could be the mechanism by
which increased levels of adenosine in asthmatic airways partici-
pate to establish the chronic nature of inflammation and airway
hyperreactivity. On the other hand, an additional mechanism
would be responsible for adenosine-induced bronchoconstriction
in asthmatics.

The role of A1 receptor was first investigated on an allergic
rabbit model. It was found that only adult rabbits immunized from
birth presented hyperresponsiveness to adenosine, suggesting the
involvement of an inducible A1 receptor due to immunization (Ali
et al., 1994; el-Hashim et al., 1996). Successively, it was shown that,
in the same model, an antisense oligonucleotide targeting A1

receptor mRNA reduced bronchoconstriction induced by either
adenosine or allergen (Nyce and Metzger, 1997). Consistent with
results is the study performed by Smith and Broadley (2010) on
guinea pigs demonstrating that A1 receptor is involved in the late
asthmatic response observed 24 h following allergen challenge;
nonetheless, in this model, A2B receptor has been demonstrated to
be involved in the cell influx and the consequent airway hyper-
reactivity. We have recently demonstrated that sensitized Wistar
rats develop A1 receptor-mediated hyperresponsiveness to adeno-
sine and to allergen 24 h following allergen challenge; the effect is
paralleled by increased A1 receptor expression on airways (Alfieri
et al., 2012). Our study is consistent with the finding of A1 over-
expression on asthmatic bronchial tissues (Brown et al., 2008) and
the hypothesis that exposure to allergen is critical to establish
airway hyperreactivity and A1 receptor up-regulation.

In other words, A2B receptor would be involved in an early stage
following allergen exposure and would mediate, as described above,
adenosine induced inflammation and hyperreactivity. A1 receptor



Fig. 1. Diagrammatic representation on the possible role of adenosine signaling in asthmatic airways. See text for details and further information. Abbreviations: AK,
adenosine kinase; ADA, adenosine deaminase; PGs, prostaglandins; LTs, leukotrienes.
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would be involved in a late stage following allergen exposure
consistent with the requirement of its induction on airways and
would mediate the direct bronchoconstrictor effect of adenosine
(Fig. 1).
3. Conclusion and perspectives

When the study of the role of adenosine in bronchial asthma is
approached, two important features must be considered: (1) its
elevated levels found in BALFs of asthmatics and thus its ability to
establish features of airway inflammation and the consequent
bronchial hyperreactivity and (2) its ability to cause bronchocon-
striction only in asthmatic airways. Mechanicistic basis underlying
these two adenosine effects are likely distinct although overlapped
under some aspects. What emerges is that A2B in humans would
mediate, indirectly, the bronchoconstriction in response to adeno-
sine and would play the main role in adenosine-induced airway
inflammation and hyperreactivity. Antagonists to this receptor
would likely limit adenosine pro-inflammatory effects. In humans
A3 receptor has an anti-inflammatory role by inhibiting immune
cell chemotaxis; such evidence has led to investigate on the
antiasthmatic potential of A3 agonists (Wilson et al., 2009).

A1 receptor that in asthmatic airways is up-regulated by the
chronic inflammation would be itself expression of an established
airway hyperreactivity and would mediate hyperresponsiveness to
adenosine and allergen (Alfieri et al., 2012; Bjorck et al., 1992;
Brown et al., 2008); thus, it would be a good target for broncho-
dilator agents development. A2A receptor, as widely demonstrated,
mediates adenosine – antinflammatory effects (Wilson et al., 2009)
thus agonists to this receptor would limit inflammation.

Adenosine receptors are practically expressed by all cell types
and are involved in either physiological or pathological processes
depending on both their relative cellular expression and adenosine
concentrations in the milieu. Under these conditions, it is very
difficult to achieve therapeutic concentrations with antagonists
and/or agonists devoid of unwanted effects and thus to develop
drugs targeting adenosine receptors as antiasthmatics.
A novel therapeutic approach would be to modulate endogen-
ous adenosine production targeting CD39 and/or CD73, whose
expression is regulated by cytokines in an inflammatory milieu
(Longhi et al., 2013). The potential therapeutic of these enzymes
has already been considered for several diseases (Forte et al., 2012;
Schetinger et al., 2007) and, for airway diseases, it has been
evaluated by studies performed on transgenic mice. CD73 –

deficient sensitized mice do not develop airway hyperreactivity
following allergen challenge, further confirming the important
role for adenosine in setting the disease (Schreiber et al., 2008).
Théâtre et al. (2012) have found that mice overexpressing CD39
present increased susceptibility to LPS-induced lung inflammation.
Increased CD73 tissue expression has been found in lung of
patients affected by COPD (Zhou et al., 2010). In the light of this
knowledge CD39 and CD73 should be considered as promising
targets for an antiasthmatic therapy aimed to switch off the
disease rather than to block the symptoms.
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