34 research outputs found

    Longitudinal study of adolescent tobacco use and tobacco control policies in India

    Get PDF
    Abstract Background This project will use a multilevel longitudinal cohort study design to assess whether changes in Community Tobacco Environmental (CTE) factors, measured as community compliance with tobacco control policies and community density of tobacco vendors and tobacco advertisements, are associated with adolescent tobacco use in urban India. India’s tobacco control policies regulate secondhand smoke exposure, access to tobacco products and exposure to tobacco marketing. Research data about the association between community level compliance with tobacco control policies and youth tobacco use are largely unavailable, and are needed to inform policy enforcement, implementation and development. Methods The geographic scope will include Mumbai and Kolkata, India. The study protocol calls for an annual comprehensive longitudinal population-based tobacco use risk and protective factors survey in a cohort of 1820 adolescents ages 12–14 years (and their parent) from baseline (Wave 1) to 36-month follow-up (Wave 4). Geographic Information Systems data collection will be used to map tobacco vendors, tobacco advertisements, availability of e-cigarettes, COTPA defined public places, and compliance with tobacco sale, point-of-sale and smoke-free laws. Finally, we will estimate the longitudinal associations between CTE factors and adolescent tobacco use, and assess whether the associations are moderated by family level factors, and mediated by individual level factors. Discussion India experiences a high burden of disease and mortality from tobacco use. To address this burden, significant long-term prevention and control activities need to include the joint impact of policy, community and family factors on adolescent tobacco use onset. The findings from this study can be used to guide the development and implementation of future tobacco control policy designed to minimize adolescent tobacco use.https://deepblue.lib.umich.edu/bitstream/2027.42/144539/1/12889_2018_Article_5727.pd

    The kinematics of swimming and relocation jumps in copepod nauplii

    Get PDF
    Copepod nauplii move in a world dominated by viscosity. Their swimming-by-jumping propulsion mode, with alternating power and recovery strokes of three pairs of cephalic appendages, is fundamentally different from the way other microplankters move. Protozoans move using cilia or flagella, and copepodites are equipped with highly specialized swimming legs. In some species the nauplius may also propel itself more slowly through the water by beating and rotating the appendages in a different, more complex pattern. We use high-speed video to describe jumping and swimming in nauplii of three species of pelagic copepods: Temora longicornis, Oithona davisae and Acartia tonsa. The kinematics of jumping is similar between the three species. Jumps result in a very erratic translation with no phase of passive coasting and the nauplii move backwards during recovery strokes. This is due to poorly synchronized recovery strokes and a low beat frequency relative to the coasting time scale. For the same reason, the propulsion efficiency of the nauplii is low. Given the universality of the nauplius body plan, it is surprising that they seem to be inefficient when jumping, which is different from the very efficient larger copepodites. A slow-swimming mode is only displayed by T. longicornis. In this mode, beating of the appendages results in the creation of a strong feeding current that is about 10 times faster than the average translation speed of the nauplius. The nauplius is thus essentially hovering when feeding, which results in a higher feeding efficiency than that of a nauplius cruising through the water

    The Drosophila melanogaster host model

    Get PDF
    The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen–host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial–host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis–host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed

    Diagnóstico, tratamento e seguimento do carcinoma medular de tireoide: recomendações do Departamento de Tireoide da Sociedade Brasileira de Endocrinologia e Metabologia

    Full text link
    corecore