18 research outputs found

    ANALYSIS OF MAGNESIUM DEFECTIVENESS AFTER DEFORMATION AT THE ROOM TEMPERATURE

    Full text link
    We conducted experiments on precipitation of pure magnesium samples in a copper cage at different degrees of deformation in order to reveal the mechanisms responsible for grain refinement during deformation. With a deformation of 15%, the initial structure is milled and microcracks are formed, but with deformation of 50% no cracks are detected, from which it can be assumed that fractures are healed.Работа выполнена в рамках государственного задания ФАНО России (тема "Давление"), при финансовой поддержке проекта УрО РАН №18-10-2-24 и проекта РФФИ №18-33-00474

    Placenta previa: risk factors, maternal and perinatal outcomes

    Get PDF
    The aim of the study is to study the features of the anamnesis, pregnancy and childbirth outcomes for the mother and fetus with placenta previa, and to identify the main risk factors for this pathology.Цель исследования – выделить основные факторы риска предлежания плаценты на основании изучения особенностей анамнеза, исходов беременности и родов для матери и плода

    Views on Working with Information in a Semi-Digital Society: Its Possibility to Develop as Open Innovation Culture

    No full text
    The transition from a semi-digital to digital society depends on the nature of work with information, and the speed and quality of digitalization largely depend on Generation Z. The purpose of the article is to identify and evaluate Gen Z’s views in Russia and Slovakia on the search and assessment of information in a semi-digital society. The empirical research methods are a questionnaire survey, in-depth interviews, and a focus group. In the context of the COVID-19 pandemic, they were conducted remotely. The study reveals that the views of the Slovak and Russian Generation Z are similar in terms of searching and speeding up the acquisition of information and especially in the high assessment of their capabilities in information search and low confidence in advertising campaigns. The Slovak Gen Z is informationally mature and, at the same time, Internet-dependent. A difference in the perception of AI in Russian and Slovak Gen Z is identified. The results can be used to improve youth policies and provide information to society in the transition to fully digital life

    Novel long-lived π-heterocyclic radical anion:a hybrid of 1,2,5-thiadiazo- and 1,2,3-dithiazolidyls

    No full text
    A long-lived π-heterocyclic radical anion of the hybrid 1,2,5-thiadiazolidyl / 1,2,3-dithiazolidyl type was electrochemically generated and characterized by EPR spectroscopy and DFT calculations

    Novel long-lived π-heterocyclic radical anion:a hybrid of 1,2,5-thiadiazo- and 1,2,3-dithiazolidyls

    No full text
    A long-lived π-heterocyclic radical anion of the hybrid 1,2,5-thiadiazolidyl / 1,2,3-dithiazolidyl type was electrochemically generated and characterized by EPR spectroscopy and DFT calculations

    Acid-base and anion binding properties of tetrafluorinated 1,3-benzodiazole, 1,2,3-benzotriazole and 2,1,3-benzoselenadiazole

    No full text
    The influence of fluorination on the acid-base properties and the capacity of structurally related 6-5 bicyclic compounds – 1,3-benzodiazole 1, 1,2,3-benzotriazole 2 and 2,1,3-benzoselenadiazole 3 to σ-hole interactions, i.e. hydrogen (1 and 2) and chalcogen (3) bondings, is studied experimentally and computationally. The tetrafluorination increases Brønsted acidity of diazole and triazole scaffolds and Lewis acidity of selenadiazole scaffold and decreases basicity. Increased Brønsted acidity facilitates anion binding via the formation of hydrogen bonds; particularly, tetrafluorinated derivative of 1 (compound 4) binds Cl–. Increased Lewis acidity of tetrafluorinated derivative of 3 (compound 10), however, is not enough for binding with Cl– and F– via the formation of chalcogen bonds in contrast to previously studied Te analog of 10. It is suggested that the maximum positive values of molecular electrostatic potential at the σ-holes, VS,max, can be reasonable metrics in the further design and synthesis of new anion receptors, with selenadiazole–diazole / triazole hybrids as a special target. Related chlorinated compounds are also discussed. Introduction Design and synthesis of new anion receptors functioning via various σ-hole interactions,[1] e.g. hydrogen and chalcogen bondings (Brønsted and Lewis acidity, respectively), attract much current attention, particularly due to potential biomedical, technological and environmental applications.[2-4] Effective tool in the field is polyfluorination, for (hetero) aromatics affecting many properties significant for chemistry, materials science and biomedicine, including a capacity to σ-hole interactions.[1,5-9] Structurally-related, 1,2-diaminobenzene-derived, 1,3- benzodiazole (benzimidazole) 1, 1,2,3-benzotriazole 2, and 2,1,3-benzoselenadiazole 3, already having numerous applications in current chemistry, materials science and biomedicine,[7,10] are appropriate targets for studying effects of polyfluorination on Brønsted (1 and 2) and Lewis (3) acidity and anion-binding properties (Scheme 1)

    Radical Anions, Radical‐Anion Salts, and Anionic Complexes of 2,1,3‐Benzochalcogenadiazoles

    No full text
    By means of cyclic voltammetry (CV) and DFT calculations, it was found that the electron‐acceptor ability of 2,1,3‐benzochalcogenadiazoles 1–3 (chalcogen: S, Se, and Te, respectively) increases with increasing atomic number of the chalcogen. This trend is nontrivial, since it contradicts the electronegativity and atomic electron affinity of the chalcogens. In contrast to radical anions (RAs) [1].− and [2].−, RA [3].− was not detected by EPR spectroscopy under CV conditions. Chemical reduction of 1–3 was performed and new thermally stable RA salts [K(THF)]+[2].− (8) and [K(18‐crown‐6)]+[2].− (9) were isolated in addition to known salt [K(THF)]+[1].− (7). On contact with air, RAs [1].− and [2].− underwent fast decomposition in solution with the formation of anions [ECN]−, which were isolated in the form of salts [K(18‐crown‐6)]+[ECN]− (10, E=S; 11, E=Se). In the case of 3, RA [3].− was detected by EPR spectroscopy as the first representative of tellurium–nitrogen π‐heterocyclic RAs but not isolated. Instead, salt [K(18‐crown‐6)]+2[3‐Te2]2− (12) featuring a new anionic complex with coordinate Te−Te bond was obtained. On contact with air, salt 12 transformed into salt [K(18‐crown‐6)]+2[3‐Te4‐3]2− (13) containing an anionic complex with two coordinate Te−Te bonds. The structures of 8–13 were confirmed by XRD, and the nature of the Te−Te coordinate bond in [3‐Te2]2− and [3‐Te4‐3]2− was studied by DFT calculations and QTAIM analysis

    Radical anions, radical-anion salts, and anionic complexes of 2,1,3-benzochalcogenadiazoles

    No full text
    By means of cyclic voltammetry (CV) and DFT calculations, it was found that the electron‐acceptor ability of 2,1,3‐benzochalcogenadiazoles 1–3 (chalcogen: S, Se, and Te, respectively) increases with increasing atomic number of the chalcogen. This trend is nontrivial, since it contradicts the electronegativity and atomic electron affinity of the chalcogens. In contrast to radical anions (RAs) [1].− and [2].−, RA [3].− was not detected by EPR spectroscopy under CV conditions. Chemical reduction of 1–3 was performed and new thermally stable RA salts [K(THF)]+[2].− (8) and [K(18‐crown‐6)]+[2].− (9) were isolated in addition to known salt [K(THF)]+[1].− (7). On contact with air, RAs [1].− and [2].− underwent fast decomposition in solution with the formation of anions [ECN]−, which were isolated in the form of salts [K(18‐crown‐6)]+[ECN]− (10, E=S; 11, E=Se). In the case of 3, RA [3].− was detected by EPR spectroscopy as the first representative of tellurium–nitrogen π‐heterocyclic RAs but not isolated. Instead, salt [K(18‐crown‐6)]+2[3‐Te2]2− (12) featuring a new anionic complex with coordinate Te−Te bond was obtained. On contact with air, salt 12 transformed into salt [K(18‐crown‐6)]+2[3‐Te4‐3]2− (13) containing an anionic complex with two coordinate Te−Te bonds. The structures of 8–13 were confirmed by XRD, and the nature of the Te−Te coordinate bond in [3‐Te2]2− and [3‐Te4‐3]2− was studied by DFT calculations and QTAIM analysis
    corecore