321 research outputs found

    Threats to soil quality in Denmark - A review of existing knowledge in the context of the EU Soil Thematic Strategy

    Get PDF
    The EU Commission is preparing a proposal for a Soil Framework Directive with the purpose of protecting the soil resources in Europe. The proposal identifies six major threats to the sustained quality of soils in Europe. This report addresses the threats that are considered most important under the prevailing soil and climatic conditions in Denmark: compaction, soil organic matter decline, and erosion by water and tillage. For each of these threats, the relevance and damage to soil functions as well as the geographic distribution in Denmark are outlined. We suggest a procedure for identifying areas at risk. This exercise involves an explicit identification of: i) the disturbing agent (climate / management) exerting the pressures on soil, and ii) the vulnerability of the soil to those stresses. Risk reduction targets, measures required to reach these targets, and the knowledge gaps and research needs to effectively cope with each threat are discussed. Our evaluation of the threats is based on soil resilience to the imposed stresses. Subsoil compaction is considered a severe threat to Danish soils due to frequent traffic with heavy machinery in modern agriculture and forestry. The soil content of organic matter is critically low for a range of Danish soils, which should be counteracted by appropriate management options. Soil erosion by tillage, and to a lesser degree by water, adversely affects soil quality on much of the farmland because degradation rates are much higher than generation of soil

    Carbohydrates in hot water extracts of soil aggregates as affected by long-term management

    Get PDF
    Microbial carbohydrates are immediate by-products of microbial metabolism and play an important role in the formation and stabilization of soil structure. The effect of long-term management on soil carbohydrate content and monosaccharide composition was investigated in five. Danish sandy loams under organic and conventional management with animal manure and mineral fertilizers. Hot-water (80Ā°C)extraction was used to measure the distribution and composition of carbohydrates in aggregate size. Carbohydrates released to hot water were determined after hydrolysis as reducing sugars equivalent to glucose. The monosaccharide composition in hot-water extracts was analyzed as the corresponding alditol acetates. Sites with a history of long-term continuos management practices were used. Three treatments from the >100 year Askov long-term field experiment were used to show results of contrasting fertilization on soil carbohydrate content. These were all grown to a four-course crop rotation. Total carbohydrate content was signifcantly infuenced by long-term management practices, with a signifcantly higher carbohydrate content in soils fertilized with either mineral fertilizers or animal manure (1200 to 800 mg C kg-1 DM aggregate)than in an unfertilized soil (600 to 500 mg C kg-1 DM aggregate). These results were as true for micro-aggregates (,0.25 mm)as for the 0.5ā€“1. 0mmand 4.0ā€“8.0 mm fractions. The organically managed soil (>40years) was sited at a commercial farm with forage crop rotations, organic manure and nouse of crop protection chemicals. These results showed signifcantly higher levels of carbohydrate both in micro-aggregate and macro-aggregates (1200 to 900 mg C kg-1 DM aggregate) than an adjacent conventionally managed soil with annual cash crop, mineral fertilizers and use of cropprotection chemicals (960 to 760 mg C kg-1 DM aggregate). Carbohydrate Ccontent generally increased as aggregate size decreased in both soils. Monosaccharide distribution was generally similar among three aggregate size classes studied. In all soils the content of monosaccharide was highest in micro-aggregates and lowest in macro-aggregates. Mannose and galactose were normally the most common monosaccharides in the hot-water extracts of aggregate fractions, indicating a predominantly microbial origin

    Soil nutrient levels define herbage yield but not root biomass in a multispecies grass-legume ley

    Get PDF
    The response of above- and below-ground biomass to soil nutrient availability is crucial for estimating belowground carbon input and predicting changes in soil carbon storage. However, the response is far from clear at plant community level, especially for grassland systems. Using a long-term field experiment initiated 123 years ago with varying soil nutrient levels (deficient, sub-optimal, optimal and over-optimal) established by use of two nutrient sources (animal manure or mineral fertiliser), we examined the effects of soil nutrient level and source on herbage yield and composition, root biomass and root-to-shoot (R/S) ratio of an unfertilised multispecies grass-legume ley. Increased nutrient levels enhanced herbage yield, but did not affect root biomass. The R/S ratio decreased from deficient to sub-optimal level, but remained constant from optimal to over-optimal level. Nutrient source did not influence herbage yield, root biomass or R/S ratio, but the legume proportion increased in soils previously receiving mineral fertiliser. The R/S ratio decreased with herbage yield, but did not vary with herbage composition. We conclude that soil nutrient level and herbage yield rather than nutrient source and herbage composition determine biomass allocation between aboveground and belowground in temperate grassland leys

    Epigenetic variation during the adult lifespan: cross-sectional and longitudinal data on monozygotic twin pairs

    Get PDF
    The accumulation of epigenetic changes was proposed to contribute to the age-related increase in the risk of most common diseases. In this study on 230 monozygotic twin pairs (MZ pairs), aged 18-89years, we investigated the occurrence of epigenetic changes over the adult lifespan. Using mass spectrometry, we investigated variation in global (LINE1) DNA methylation and in DNA methylation at INS, KCNQ1OT1, IGF2, GNASAS, ABCA1, LEP, and CRH, candidate loci for common diseases. Except for KCNQ1OT1, interindividual variation in locus-specific DNA methylation was larger in old individuals than in young individuals, ranging from 1.2-fold larger at ABCA1 (P=0.010) to 1.6-fold larger at INS (P=3.7Ɨ1

    Manuring and stable nitrogen isotope ratios in cereals and pulses: towards a new archaeobotanical approach to the inference of land use and dietary practices

    Get PDF
    This paper explores the impact of animal manure application on the Ī“15N values of a broad range of crops (cereals and pulses), under a range of manuring levels/regimes and at a series of locations extending from northwest Europe to the eastern Mediterranean. We included both agricultural field experiments and areas where ā€˜traditionalā€™ farming is practised. Our aim is to ground-truth interpretation of Ī“15N values in archaeobotanical crop remains as evidence of past growing conditions and husbandry practices. The results confirm the potentially radical impact of manuring on Ī“15N values in cereals, depending on manuring level, but indicate only a slight effect on pulses, which can fix atmospheric nitrogen. The expected geographical trend towards greater Ī“15N with increasing climatic aridity is not apparent, probably because the growing conditions for crops are ā€˜bufferedā€™ through crop management. Each of these observations has fundamental implications for archaeobotanical interpretation of Ī“15N values as evidence of land use practices and (together with analysis of bone collagen/tooth enamel in potential consumers) palaeodiet
    • ā€¦
    corecore