597 research outputs found

    Evidence for Two Time Scales in Long SNS Junctions

    Full text link
    We use microwave excitation to elucidate the dynamics of long superconductor / normal metal / superconductor Josephson junctions. By varying the excitation frequency in the range 10 MHz - 40 GHz, we observe that the critical and retrapping currents, deduced from the dc voltage vs. dc current characteristics of the junction, are set by two different time scales. The critical current increases when the ac frequency is larger than the inverse diffusion time in the normal metal, whereas the retrapping current is strongly modified when the excitation frequency is above the electron-phonon rate in the normal metal. Therefore the critical and retrapping currents are associated with elastic and inelastic scattering, respectively

    Aspetti etici nel campo dell’open access

    Get PDF
    The article summarizes the ethical implications in the following areas: a) open access of data and results related to cultural heritage; b) recognition/loss of intellectual property and paternity of moral rights; c) dissemination of the results of knowledge according to the article 30 of the Second Additional Protocol to the Hague Convention of 1954 and the Faro Convention

    Room temperature magneto-optic effect in silicon light-emitting diodes

    Get PDF
    In weakly spin-orbit coupled materials, the spin-selective nature of recombination can give rise to large magnetic-field effects, for example on electro-luminescence from molecular semiconductors. While silicon has weak spin-orbit coupling, observing spin-dependent recombination through magneto-electroluminescence is challenging due to the inefficiency of emission due to silicon's indirect band-gap, and to the difficulty in separating spin-dependent phenomena from classical magneto-resistance effects. Here we overcome these challenges to measure magneto-electroluminescence in silicon light-emitting diodes fabricated via gas immersion laser doping. These devices allow us to achieve efficient emission while retaining a well-defined geometry thus suppressing classical magnetoresistance effects to a few percent. We find that electroluminescence can be enhanced by up to 300\% near room temperature in a seven Tesla magnetic field showing that the control of the spin degree of freedom can have a strong impact on the efficiency of silicon LEDs

    Microwave response of an NS ring coupled to a superconducting resonator

    Get PDF
    A long phase coherent normal (N) wire between superconductors (S) is characterized by a dense phase dependent Andreev spectrum . We probe this spectrum in a high frequency phase biased configuration, by coupling an NS ring to a multimode superconducting resonator. We detect a dc flux and frequency dependent response whose dissipative and non dissipative components are related by a simple Debye relaxation law with a characteristic time of the order of the diffusion time through the N part of the ring. The flux dependence exhibits h/2eh/2e periodic oscillations with a large harmonics content at temperatures where the Josephson current is purely sinusoidal. This is explained considering that the populations of the Andreev levels are frozen on the time-scale of the experiments.Comment: 5 pages,4 figure

    Cap rock efficiency of geothermal systems in fold-and-thrust belts: Evidence from paleo-thermal and structural analyses in Rosario de La Frontera geothermal area (NW Argentina)

    Get PDF
    Cap rock characterization of geothermal systems is often neglected despite fracturing may reduce its efficiency and favours fluid migration. We investigated the siliciclastic cap rock of Rosario de La Frontera geothermal system (NW Argentina) in order to assess its quality as a function of fracture patterns and related thermal alteration. Paleothermal investigations (XRD on fine-grained fraction of sediments, organic matter optical analysis and fluid inclusions on veins) and 1D thermal modelling allowed us to distinguish the thermal fingerprint associated to sedimentary burial from that related to fluid migration. The geothermal system is hosted in a Neogene N-S anticline dissected by high angle NNW- and ENE-striking faults. Its cap rock can be grouped into two quality categories: • rocks acting as good insulators, deformed by NNW–SSE and E–W shear fractures, NNE-SSW gypsum- and N-S-striking calcite-filled veins that developed during the initial stage of anticline growth. Maximum paleo-temperatures (< 60 °C) were experienced during deposition to folding phases.• rocks acting as bad insulators, deformed by NNW-SSE fault planes and NNW- and WNW-striking sets of fractures associated to late transpressive kinematics. Maximum paleo-temperatures higher than about 115 °C are linked to fluid migration from the reservoir to surface (with a reservoir top at maximum depths of 2.5 km) along fault damage zones.This multi-method approach turned out to be particularly useful to trace the main pathways of hot fluids and can be applied in blind geothermal systems where either subsurface data are scarce or surface thermal anomalies are lacking.Fil: Maffucci, R.. Universita Degli Studi Della Tuscia; Italia. Universita Degli Studi Roma Tre; ItaliaFil: Corrado, Sveva. Universita Degli Studi Roma Tre; ItaliaFil: Aldega, L.. Instituto de Investigaciones Universitarias Roma la Sapienza; ItaliaFil: Bigi, S.. Instituto de Investigaciones Universitarias Roma la Sapienza; ItaliaFil: Chiodi, Agostina Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; ArgentinaFil: Di Paolo, L.. Eni E&P Division; ItaliaFil: Giordano, G.. Universita Degli Studi Roma Tre; ItaliaFil: Invernizzi, C.. Universita Degli Di Camerino; Itali

    The ATLAS barrel level-1 Muon Trigger Sector-Logic/RX off-detector trigger and acquisition board

    Get PDF
    The ATLAS experiment uses a system of three concentric layers of Resistive Plate Chambers (RPC) detector for the Level-1 Muon Trigger in the air-core barrel toroid region. The trigger algorithm looks for hit coincidences within different detector layers inside the programmable geometrical road which defines the transverse momentum cut. The on-detector electronics that provides the trigger and detector readout functionalities collects input signals coming from the RPC front-end. Trigger and readout data are then sent via optical fibres to the off-detector electronics. Six or seven optical fibres from one of the 64 trigger sectors go to one Sector-Logic/RX module, that later elaborates the collected trigger and readout data, and sends data respectively to the Read-Out Driver modules and to the Central Level-1 Trigger. We present the functionality and the implementation of the VME Sector-Logic/RX module, and the configuration of the system for the first cosmic ray data collected using this module

    Proximity DC squids in the long junction limit

    Full text link
    We report the design and measurement of Superconducting/normal/superconducting (SNS) proximity DC squids in the long junction limit, i.e. superconducting loops interrupted by two normal metal wires roughly a micrometer long. Thanks to the clean interface between the metals, at low temperature a large supercurrent flows through the device. The dc squid-like geometry leads to an almost complete periodic modulation of the critical current through the device by a magnetic flux, with a flux periodicity of a flux quantum h/2e through the SNS loop. In addition, we examine the entire field dependence, notably the low and high field dependence of the maximum switching current. In contrast with the well-known Fraunhoffer-type oscillations typical of short wide junctions, we find a monotonous gaussian extinction of the critical current at high field. As shown in [15], this monotonous dependence is typical of long and narrow diffusive junctions. We also find in some cases a puzzling reentrance at low field. In contrast, the temperature dependence of the critical current is well described by the proximity effect theory, as found by Dubos {\it et al.} [16] on SNS wires in the long junction limit. The switching current distributions and hysteretic IV curves also suggest interesting dynamics of long SNS junctions with an important role played by the diffusion time across the junction.Comment: 12 pages, 16 figure

    Supra-oscillatory critical temperature dependence of Nb-Ho bilayers

    Full text link
    We investigate the critical temperature Tc of a thin s-wave superconductor (Nb) proximity coupled to a helical rare earth ferromagnet (Ho). As a function of the Ho layer thickness, we observe multiple oscillations of Tc superimposed on a slow decay, that we attribute to the influence of the Ho on the Nb proximity effect. Because of Ho inhomogeneous magnetization, singlet and triplet pair correlations are present in the bilayers. We take both into consideration when solving the self consistent Bogoliubov-de Gennes equations, and we observe a reasonable agreement. We also observe non-trivial transitions into the superconducting state, the zero resistance state being attained after two successive transitions which appear to be associated with the magnetic structure of Ho.Comment: Main article: 5 pages, 4 figures; Supplementary materials: 4 pages, 5 figure

    High-speed data transfer with FPGAs and QSFP+ modules

    Full text link
    We present test results and characterization of a data transmission system based on a last generation FPGA and a commercial QSFP+ (Quad Small Form Pluggable +) module. QSFP+ standard defines a hot-pluggable transceiver available in copper or optical cable assemblies for an aggregated bandwidth of up to 40 Gbps. We implemented a complete testbench based on a commercial development card mounting an Altera Stratix IV FPGA with 24 serial transceivers at 8.5 Gbps, together with a custom mezzanine hosting three QSFP+ modules. We present test results and signal integrity measurements up to an aggregated bandwidth of 12 Gbps.Comment: 5 pages, 3 figures, Published on JINST Journal of Instrumentation proceedings of Topical Workshop on Electronics for Particle Physics 2010, 20-24 September 2010, Aachen, Germany(R Ammendola et al 2010 JINST 5 C12019
    • …
    corecore