55 research outputs found

    Wake-induced pressure fluctuations on the Mars2020/SuperCam microphone inform on Martian wind properties

    Get PDF
    The SuperCam Mars 2020 Microphone, a collabora- tion between ISAE-SUPAERO, IRAP in Toulouse and the Los Alamos National Laboratory (LANL), will record sounds from the surface of Mars in the audible range. It will support SuperCam Laser-Induced Breakdown Spectroscopy (LIBS) investigation by recording LIBS shock waves but it will also record aeroacoustic noise generated by wind flowing past the microphone. Here we use Computational Fluid Dynamics to study the interaction between the wind and SuperCam, by means of Direct Numerical Simulations. The goal is to understand how the microphone signal can be used to determine the wind speed and direction on Mars

    Near Surface Atmospheric Temperatures at Jezero From Mars 2020 MEDA Measurements

    Get PDF
    The Mars Environmental Dynamics Analyzer instrument on Mars 2020 has five Atmospheric Temperature Sensors at two altitudes (0.84 and 1.45 m) plus a Thermal InfraRed Sensor that measures temperatures on the surface and at ∼40 m. We analyze the measurements from these sensors to describe the evolution of temperatures in Jezero up to mission sol 400 (solar longitude LS = 13°–203°). The diurnal thermal cycle is characterized by a daytime convective period and a nocturnal stable atmosphere with a variable thermal inversion. We find a linear relationship between the daytime temperature fluctuations and the vertical thermal gradient with temperature fluctuations that peak at noon with typical values of 2.5 K at 1.45 m. In the late afternoon (∼17:00 Local True Solar Time), the atmosphere becomes vertically isothermal with vanishing fluctuations. We observe very small seasonal changes in air temperatures during the period analyzed. This is related to small changes in solar irradiation and dust opacity. However, we find significant changes in surface temperatures that are related to the variety of thermal inertias of the terrains explored along the traverse of Perseverance. These changes strongly influence the vertical thermal gradient, breaking the nighttime thermal inversion over terrains of high thermal inertia. We explore possible detections of atmospheric tides on near-surface temperatures and we examine variations in temperatures over timescales of a few sols that could be indicative of atmospheric waves affecting near-surface temperatures. We also discuss temperatures during a regional dust storm at LS = 153°–156° that simultaneously warmed the near surface atmosphere while cooling the surface.We are very grateful to the entire Mars 2020 science operations team. We would like to thank two anonymous reviewers for comments and suggestions that helped us to improve the quality of the manuscript. A. Munguira is supported by the grant PRE2020-092562 funded by MCIN/AEI/10.13039/501100011033 and by “ESF Investing in your future.” R. Hueso and A. Sánchez-Lavega are supported by Grant PID2019-109467GB-I00 funded by MCIN/AEI/10.13039/501100011033/and by Grupos Gobierno Vasco IT1742-22. US coauthors have been funded by NASA's STMD, HEOMD, and SMD. Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). B. Chide is supported by the Director's Postdoctoral Fellowship from the Los Alamos National Laboratory. M. Lemmon is supported by contract 15-712 from Arizona State University and 1607215 from Caltech-JPL. R. Lorenz was supported by JPL contract 1655893. G. Martínez acknowledges JPL funding from USRA Contract Number 1638782. A. Vicente-Retortillo is supported by the Spanish State Research Agency (AEI) Project No. MDM-2017-0737 Unidad de Excelencia “María de Maeztu”- Centro de Astrobiología (INTA-CSIC), and by the Comunidad de Madrid Project S2018/NMT-4291 (TEC2SPACE-CM). Researchers based in France acknowledge support from CNES for their work on Perseverance

    Nocturnal Turbulence at Jezero Crater as Determined From MEDA Measurements and Modeling

    Get PDF
    Mars 2020 Mars Environmental Dynamics Analyzer (MEDA) instrument data acquired during half of a Martian year (Ls 13°–180°), and modeling efforts with the Mars Regional Atmospheric Modeling System (MRAMS) and the Mars Climate Database (MCD) enable the study of the seasonal evolution and variability of nocturnal atmospheric turbulence at Jezero crater. Nighttime conditions in Mars's Planetary Boundary Layer are highly stable because of strong radiative cooling that efficiently inhibits convection. However, MEDA nighttime observations of simultaneous rapid fluctuations in horizontal wind speed and air temperatures suggest the development of nighttime turbulence in Jezero crater. Mesoscale modeling with MRAMS also shows a similar pattern and enables us to investigate the origins of this turbulence and the mechanisms at play. As opposed to Gale crater, less evidence of turbulence from breaking mountain wave activity was found in Jezero during the period studied with MRAMS. On the contrary, the model suggests that nighttime turbulence at Jezero crater is explained by increasingly strong wind shear produced by the development of an atmospheric bore-like disturbance at the nocturnal inversion interface. These atmospheric bores are produced by downslope winds from the west rim undercutting a strong low-level jet aloft from ∼19:00 to 01:00 LTST and from ∼01:00 LTST to dawn when undercutting weak winds aloft. The enhanced wind shear leads to a reduction in the Richardson number and an onset of mechanical turbulence. Once the critical Richardson Number is reached (Ri ∼ <0.25), shear instabilities can mix warmer air aloft down to the surface.This research was funded by Grant RTI2018-098728-B-C31 and PN2021-PID2021-126719OB-C41 by the Spanish Ministry of Science and Innovation/State Agency of Research MCIN/AEI/10.13039/501100011033. AM, ASL, TR, and RH were supported by Grant PID2019-109467GB-I00 funded by MCIN/AEI/10.13039/501100011033/and by Grupos Gobierno Vasco IT1366-19. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). The JPL co-authors acknowledge funding from NASA's Space Technology Mission Directorate and the Science Mission Directorate. CEN was supported by funding from the Mars 2020 mission, part of the NASA Mars Exploration Program

    Experimental Wind Characterization with the SuperCam Microphone under a Simulated martian Atmosphere

    Get PDF
    Located on top of the mast of the Mars 2020 Perseverance rover, the SuperCam instrument suite includes a microphone to record audible sounds from 100 Hz to 10 kHz on the surface of Mars. It will support SuperCam’s Laser-Induced Breakdown Spectroscopy investigation by recording laser-induced shock-waves but it will also record aeroacoustic noise generated by wind flowing past the microphone. This experimental study was conducted in the Aarhus planetary wind-tunnel under low CO2 pressure with wind generated at several velocities. It focused on understanding the wind-induced acoustic signal measured by microphones instrumented in a real scale model of the rover mast as a function of the wind speed and wind orientation. Acoustic spectra recorded under a wind flow show that the low-frequency range of the microphone signal is mainly influenced by the wind velocity. In contrast, the higher frequency range is seen to depend on the wind direction relative to the microphone. On the one hand, for the wind conditions tested inside the tunnel, it is shown that the Root Mean Square of the pressure, computed over the 100 Hz to 500 Hz frequency range, is proportional to the dynamic pressure. Therefore, the SuperCam microphone will be able to estimate the wind speed, considering an in situ cross-calibration with the Mars Environmental Dynamic Analyzer. On the other hand, for a given wind speed, it is observed that the root mean square of the pressure, computed over the 500 Hz to 2000 Hz frequency range, is at its minimum when the microphone is facing the wind whereas it is at its maximum when the microphone is pointing downwind. Hence, a full 360° rotation of the mast in azimuth in parallel with sound recording can be used to retrieve the wind direction. We demonstrate that the SuperCam Microphone has a priori the potential to determine both the speed and the direction of the wind on Mars, thus contributing to atmospheric science investigations

    The sound of a Martian dust devil

    Get PDF
    Dust devils (convective vortices loaded with dust) are common at the surface of Mars, particularly at Jezero crater, the landing site of the Perseverance rover. They are indicators of atmospheric turbulence and are an important lifting mechanism for the Martian dust cycle. Improving our understanding of dust lifting and atmospheric transport is key for accurate simulation of the dust cycle and for the prediction of dust storms, in addition to being important for future space exploration as grain impacts are implicated in the degradation of hardware on the surface of Mars. Here we describe the sound of a Martian dust devil as recorded by the SuperCam instrument on the Perseverance rover. The dust devil encounter was also simultaneously imaged by the Perseverance rover's Navigation Camera and observed by several sensors in the Mars Environmental Dynamics Analyzer instrument. Combining these unique multi-sensorial data with modelling, we show that the dust devil was around 25m large, at least 118m tall, and passed directly over the rover travelling at approximately 5ms-1. Acoustic signals of grain impacts recorded during the vortex encounter provide quantitative information about the number density of particles in the vortex. The sound of a Martian dust devil was inaccessible until SuperCam microphone recordings. This chance dust devil encounter demonstrates the potential of acoustic data for resolving the rapid wind structure of the Martian atmosphere and for directly quantifying wind-blown grain fluxes on Mars.We are most grateful for the support of the Mars 2020 project team, including hardware and operation teams. This project was supported in the US by the NASA Mars Exploration Program, and in France by CNES. It is based on observations with SuperCam embarked on Perseverance (Mars2020). The research carried out at the Jet Propulsion Laboratory, California Institute of Technology, is under a contract with the National Aeronautics and Space Administration (80NM0018D0004). The JPL co-author (M.T.) acknowledges funding from NASA’s Space Technology Mission Directorate and the Science Mission Directorate. A. V-R is supported by the Spanish State Research Agency (AEI) Project No. MDM-2017-0737 Unidad de Excelencia “María de Maeztu”- Centro de Astrobiología (INTA-CSIC), and by the Comunidad de Madrid Project S2018/NMT-4291 (TEC2SPACE-CM). R.H. and A.S-L. were supported by Grant PID2019-109467GB-I00 funded by MCIN/AEI/10.13039/501100011033/ and by Grupos Gobierno Vasco IT1742-22. A.M. was supported by Grant PRE2020-092562 funded by MCIN/AEI/10.13039/501100011033 and by “ESF Investing in your future”. R.L. acknowledges InSight PSP Grant 80NSSC18K1626 as well as the Mars 2020 project. B.C. is supported by the Director’s Postdoctoral Fellowship from the Los Alamos National Laboratory, grant 20210960PRD3. JA.RM., M.M, J.T and J.G-E were supported by MCIN/AEI’s Grant RTI2018-098728-B-C31

    Convective Vortices and Dust Devils Detected and Characterized by Mars 2020

    Get PDF
    We characterize vortex and dust devils (DDs) at Jezero from pressure and winds obtained with the Mars Environmental Dynamics Analyzer (MEDA) instrument on Mars 2020 over 415 Martian days (sols) (Ls = 6°–213°). Vortices are abundant (4.9 per sol with pressure drops >0.5 Pa correcting from gaps in coverage) and they peak at noon. At least one in every five vortices carries dust, and 75% of all vortices with Δp > 2.0 Pa are dusty. Seasonal variability was small but DDs were abundant during a dust storm (Ls = 152°–156°). Vortices are more frequent and intense over terrains with lower thermal inertia favoring high daytime surface-to-air temperature gradients. We fit measurements of winds and pressure during DD encounters to models of vortices. We obtain vortex diameters that range from 5 to 135 m with a mean of 20 m, and from the frequency of close encounters we estimate a DD activity of 2.0–3.0 DDs km−2 sol−1. A comparison of MEDA observations with a Large Eddy Simulation of Jezero at Ls = 45° produces a similar result. Three 100-m size DDs passed within 30 m of the rover from what we estimate that the activity of DDs with diameters >100 m is 0.1 DDs km−2sol−1, implying that dust lifting is dominated by the largest vortices in Jezero. At least one vortex had a central pressure drop of 9.0 Pa and internal winds of 25 ms−1. The MEDA wind sensors were partially damaged during two DD encounters whose characteristics we elaborate in detail.The authors are very grateful to the entire Mars 2020 science operations team. The authors would also like to thank Lori Fenton and an anonymous reviewer for many suggestions that greatly improved the manuscript. This work was supported by Grant PID2019-109467GB-I00 funded by MCIN/AEI/10.13039/501100011033/ and by Grupos Gobierno Vasco IT1742-22 and by the Spanish National Research, Development and Innovation Program, through the Grants RTI2018-099825-B-C31, ESP2016-80320-C2-1-R, and ESP2014-54256-C4-3-R. Baptiste Chide is supported by the Director's Postdoctoral Fellowship from the Los Alamos National Laboratory. M. Lemmon is supported by contract 15-712 from Arizona State University and 1607215 from Caltech-JPL. R. Lorenz was supported by JPL contract 1655893. Germán Martínez acknowledges JPL funding from USRA Contract Number 1638782. A. Munguira was supported by Grant PRE2020-092562 funded by MCIN/AEI and by “ESF Investing in your future.” A. Vicente-Retortillo is supported by the Spanish State Research Agency (AEI) Project No. MDM-2017-0737 Unidad de Excelencia “María de Maeztu”-Centro de Astrobiología (INTA-CSIC), and by the Comunidad de Madrid Project S2018/NMT-4291 (TEC2SPACE-CM). Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). Finnish researchers acknowledge the Academy of Finland Grant 328 310529. Researchers based in France acknowledge support from the CNES for their work on Perseverance

    The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description

    Get PDF
    On the NASA 2020 rover mission to Jezero crater, the remote determination of the texture, mineralogy and chemistry of rocks is essential to quickly and thoroughly characterize an area and to optimize the selection of samples for return to Earth. As part of the Perseverance payload, SuperCam is a suite of five techniques that provide critical and complementary observations via Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), visible and near-infrared spectroscopy (VISIR), high-resolution color imaging (RMI), and acoustic recording (MIC). SuperCam operates at remote distances, primarily 2-7 m, while providing data at sub-mm to mm scales. We report on SuperCam's science objectives in the context of the Mars 2020 mission goals and ways the different techniques can address these questions. The instrument is made up of three separate subsystems: the Mast Unit is designed and built in France; the Body Unit is provided by the United States; the calibration target holder is contributed by Spain, and the targets themselves by the entire science team. This publication focuses on the design, development, and tests of the Mast Unit; companion papers describe the other units. The goal of this work is to provide an understanding of the technical choices made, the constraints that were imposed, and ultimately the validated performance of the flight model as it leaves Earth, and it will serve as the foundation for Mars operations and future processing of the data.In France was provided by the Centre National d'Etudes Spatiales (CNES). Human resources were provided in part by the Centre National de la Recherche Scientifique (CNRS) and universities. Funding was provided in the US by NASA's Mars Exploration Program. Some funding of data analyses at Los Alamos National Laboratory (LANL) was provided by laboratory-directed research and development funds

    The first microphone on Mars : its contribution to Laser-Induced Breakdown Spectroscopy and atmospheric science

    No full text
    Le 18 février 2021, l'astromobile de la NASA Perseverance se posera dans le cratère Jezero à la recherche de traces de vie passée. A son bord l'expérience franco-américaine SuperCam ne contient pas moins de quatre techniques spectroscopiques, une caméra haute résolution et un microphone. Ce microphone sera le premier à enregistrer des ondes acoustiques audibles à la surface de Mars entre 100 Hz et10 kHz. Il ouvrira un nouveau champ d'investigation qui fait l'objet de cette thèse. Les objectifs scientifiques de cette thèse s'organisent autour des sons qui seront audibles par ce microphone : les phénomènes atmosphériques dans l'environnement proche du véhicule et les bruits artificiels générés par SuperCam lui-même. Parmi ces derniers, la technique de la spectroscopie de plasma induit par laser (LIBS) ablate les roches et les sols martiens avec un laser impulsionnel, ce qui produit un signal acoustique lors de la détente de ce plasma. Ce manuscrit propose une étude amont qui vise à caractériser le support du microphone à la LIBS et sa contribution à la science atmosphérique. Ces deux thèmes sont explorés expérimentalement en reproduisant en laboratoire les conditions d'écoute que le microphone rencontrera sur Mars.Premièrement, un banc de mesure LIBS sous atmosphère martienne est utilisé pour comparer le signal acoustique issu de l'ablation de différents minéraux. Une étude métrologique a déterminé la sensibilité de l'énergie acoustique par rapport aux paramètres expérimentaux de la LIBS : elle est proportionnelle à la pression atmosphérique et à l'éclairement déposé sur la cible. Ces relations permettront de normaliser le signal acoustique entre toutes les cibles échantillonnées par la LIBS sur Mars. De plus il est remarqué que la décroissance de l'énergie acoustique au cours d'une séquence de tirs est linéairement reliée au volume de la cavité d'ablation et que le taux de décroissance est corrélé à la dureté de la roche. Volume d'ablation et dureté seront deux informations utilisées pour caractériser les cibles de SuperCam et en particulier étudier celles présentant des vernis d'altération en surface.D'autre part, une campagne de tests dans une soufflerie martienne est effectuée pour corréler les propriétés d'un écoulement de vent avec le signal acoustique induit par ce dernier sur le microphone. Il est démontré que le microphone peut déterminer la vitesse de l'écoulement en étudiant le contenu basse fréquence du spectre, mais aussi sa direction en regardant le contenu haute fréquence. Ces résultats nécessiteront une calibration in situ sur Mars avec la station météo de Perseverance, MEDA. Il est également montré que la synchronisation du microphone avec le laser permet une mesure originale de la vitesse du son et donc de la température atmosphérique proche de la surface.Enfin, cette validation des objectifs scientifiques du microphone s'accompagne d'un soutien au développement instrumental du microphone, avec la validation de ses performances, la définition des modes d'observation et la préparation des opérations de SuperCam à la surface de Mars.In February 2021 the Mars 2020 Perseverance rover will land in Jezero to search for traces of past life.Part of the Perseverance payload, the SuperCam instrument suite includes four spectroscopy techniques,a high resolution imager and a microphone. This microphone will be the first microphone to record audible acoustic waves on the surface on Mars between 100 Hz to 10 kHz. It will open a new field of investigation which is the subject of this thesis. The scientific objectives of this thesis are organized around the sounds that will be recorded by this microphone : atmospheric phenomena in the close vicinity of the rover and artificial noises generated by SuperCam itself. Among the latest, the laser-induced breakdown spectroscopy technique (LIBS) ablates Martian rocks and soils with a pulsed laser. It creates an acoustic signal due tothe expansion of this plasma. These two topics are experimentally explored thanks to the development of laboratory test benches that simulate the conditions likely to be encountered by the microphone on Mars.On the one hand a LIBS setup under Mars atmosphere is used to compare acoustic signal from several minerals. A metrological study of the sensitivity of the acoustic signal with respect to LIBS experimental parameters is conducted : the acoustic energy is proportional to the CO2 background pressure and to the irradiance deposited on the sample. These two relationships will help to normalize the acoustic signal from multiple LIBS targets on Mars. Moreover, it is noticed that the decrease of the acoustic energy along a LIBS burst is linearly linked to the ablated volume. The decrease rate is correlated to the rock hardness.It provides new information relative to the ablation process that is independent from the LIBS emission spectrum. It could be used to better characterize geologic targets and rock, in particular the ones with asurface coating or a weathering rind.On the other hand, a test campaign in a Martian wind tunnel is dedicated to link wind properties withwind-induced signal recorded by the microphone. It is demonstrated that the microphone can determinethe flow velocity by studying the low frequency range of the acoustic spectrum whereas the wind directioncan be retrieved by looking at the high frequency range. An in situ cross-calibration with the weather station on board Perseverance, MEDA, will be required to validate these results. It is also shown that the synchronization of the microphone with the LIBS laser can be used to measure the speed of sound and therefore to estimate the atmospheric temperature close to the surface of Mars.This work also describes some progresses in the microphone development including the performances' validation, the implementation of operating modes and the preparation of SuperCam operations at the surface of Mars

    Acoustic monitoring of laser-induced phase transitions in minerals: implication for Mars exploration with Supercam

    No full text
    International audienceThe Supercam instrument suite onboard the Mars 2020 Perseverance rover uses the laser-induced breakdown spectroscopy (LIBS) technique to determine the elemental composition of rocks and soils of the Mars surface. It is associated with a microphone to retrieve the physical properties of the ablated targets when listening to the laser-induced acoustic signal. In this study, we report the monitoring of laser-induced mineral phase transitions in acoustic data. Sound data recorded during the laser ablation of hematite, goethite and diamond showed a sharp increase of the acoustic signal amplitude over the first laser shots. Analyses of the laser-induced craters with Raman spectroscopy and scanning electron microscopy indicate that both hematite and goethite have been transformed into magnetite and that diamond has been transformed into amorphous-like carbon over the first laser shots. It is shown that these transitions are the root cause of the increase in acoustic signal, likely due to a change in target's physical properties as the material is transformed. These results give insights into the influence of the target's optical and thermal properties over the acoustic signal. But most importantly, in the context of the Mars surface exploration with Supercam, as this behavior occurs only for specific phases, it demonstrates that the microphone data may help discriminating mineral phases whereas LIBS data only have limited capabilities
    corecore