585 research outputs found
The role of surface chemical reactivity in the stability of electronic nanodevices based on two-dimensional materials "beyond graphene" and topological insulators
Here, we examine the influence of surface chemical reactivity toward ambient
gases on the performance of nanodevices based on two-dimensional materials
"beyond graphene" and novel topological phases of matter. While surface
oxidation in ambient conditions was observed for silicene and phosphorene with
subsequent reduction of the mobility of charge carriers, nanodevices with
active channels of indium selenide, bismuth chalcogenides and transition-metal
dichalcogenides are stable in air. However, air-exposed indium selenide suffers
of p-type doping due to water decomposition on Se vacancies, whereas the low
mobility of charge carriers in transition-metal dichalcogenides increases the
response time of nanodevices. Conversely, bismuth chalcogenides require a
control of crystalline quality, which could represent a serious hurdle for up
scaling
Bismuth vanadate photoanodes for water splitting deposited by radio frequency plasma reactive co-sputtering
Photoactive bismuth vanadate (BiVO4) thin coatings were deposited on fluorine-doped tin oxide glass by plasma reactive sputtering from Bi2O3 and vanadium (V) radio frequency (RF) powered targets. The films were characterized by x-ray diffraction, scanning electron microscopy, energy dispersion spectroscopy, and UV-vis spectroscopy. The effects that the power density supplied to the Bi2O3 target, the post-annealing treatment, and the film thickness have on the structural features and on the photoelectrochemical (PEC) performances of the so obtained BiVO4 film-based photoelectrodes were investigated. Their PEC performance in water splitting was evaluated in a three-electrode cell by both incident photon to current efficiency (IPCE) and linear sweep voltammetry measurements under AM 1.5 G simulated solar light irradiation. A monoclinic phase of BiVO4, which is more photoactive than the tetragonal BiVO4 phase, was obtained by optimizing the power density supplied to the Bi2O3 target, i.e., by tuning the Bi:V:O atomic ratio. The best PEC performance was obtained for a stoichiometric 1:1 Bi:V atomic ratio, attained with 20 W power supplied at the Bi2O3 target and 300 W power supplied at the vanadium target, and an optimal 200 nm thickness of the BiVO4 film, with a 0.65 mA/cm2 photocurrent density attained at 1.23 V vs. standard calomel electrode, under simulated solar light. These results show the suitability of plasma reactive sputtering with two RF powered electrodes for the deposition of BiVO4 photoanodes for water splitting
Deep-well ultrafast manipulation of a SQUID flux qubit
Superconducting devices based on the Josephson effect are effectively used
for the implementation of qubits and quantum gates. The manipulation of
superconducting qubits is generally performed by using microwave pulses with
frequencies from 5 to 15 GHz, obtaining a typical operating clock from 100MHz
to 1GHz. A manipulation based on simple pulses in the absence of microwaves is
also possible. In our system a magnetic flux pulse modifies the potential of a
double SQUID qubit from a symmetric double well to a single deep well
condition. By using this scheme with a Nb/AlOx/Nb system we obtained coherent
oscillations with sub-nanosecond period (tunable from 50ps to 200ps), very fast
with respect to other manipulating procedures, and with a coherence time up to
10ns, of the order of what obtained with similar devices and technologies but
using microwave manipulation. We introduce the ultrafast manipulation
presenting experimental results, new issues related to this approach (such as
the use of a feedback procedure for cancelling the effect of "slow"
fluctuations), and open perspectives, such as the possible use of RSFQ logic
for the qubit control.Comment: 9 pages, 7 figure
Dynamics of Josephson junctions and single-flux-quantum networks with superconductor-insulator-normal metal junction shunts
Within the framework of the microscopic model of tunneling, we modelled the
behavior of the Josephson junction shunted by the
Superconductor-Insulator-Normal metal (SIN) tunnel junction. We found that the
electromagnetic impedance of the SIN junction yields both the
frequency-dependent damping and dynamic reactance which leads to an increase in
the effective capacitance of the circuit. We calculated the dc I-V curves and
transient characteristics of these circuits and explained their quantitative
differences to the curves obtained within the resistively shunted junction
model. The correct operation of the basic single-flux-quanta circuits with such
SIN-shunted junctions, i.e. the Josephson transmission line and the toggle
flip-flop, have also been modelled.Comment: 8 pages incl. 7 figure
Commissioning of the MEG II tracker system
The MEG experiment at the Paul Scherrer Institut (PSI) represents the state
of the art in the search for the charged Lepton Flavour Violating (cLFV) decay. With the phase 1, MEG set the new world best
upper limit on the \mbox{BR}(\mu^+ \rightarrow e^+ \gamma) < 4.2 \times
10^{-13} (90% C.L.). With the phase 2, MEG II, the experiment aims at reaching
a sensitivity enhancement of about one order of magnitude compared to the
previous MEG result. The new Cylindrical Drift CHamber (CDCH) is a key detector
for MEG II. CDCH is a low-mass single volume detector with high granularity: 9
layers of 192 drift cells, few mm wide, defined by wires in a
stereo configuration for longitudinal hit localization. The filling gas mixture
is Helium:Isobutane (90:10). The total radiation length is
\mbox{X}_0, thus minimizing the Multiple Coulomb Scattering (MCS)
contribution and allowing for a single-hit resolution m and an
angular and momentum resolutions of 6 mrad and 90 keV/c respectively. This
article presents the CDCH commissioning activities at PSI after the wiring
phase at INFN Lecce and the assembly phase at INFN Pisa. The endcaps
preparation, HV tests and conditioning of the chamber are described, aiming at
reaching the final stable working point. The integration into the MEG II
experimental apparatus is described, in view of the first data taking with
cosmic rays and beam during the 2018 and 2019 engineering runs. The
first gas gain results are also shown. A full engineering run with all the
upgraded detectors and the complete DAQ electronics is expected to start in
2020, followed by three years of physics data taking.Comment: 10 pages, 12 figures, 1 table, proceeding at INSTR'20 conference,
accepted for publication in JINS
Single-hit resolution measurement with MEG II drift chamber prototypes
Drift chambers operated with helium-based gas mixtures represent a common
solution for tracking charged particles keeping the material budget in the
sensitive volume to a minimum. The drawback of this solution is the worsening
of the spatial resolution due to primary ionisation fluctuations, which is a
limiting factor for high granularity drift chambers like the MEG II tracker. We
report on the measurements performed on three different prototypes of the MEG
II drift chamber aimed at determining the achievable single-hit resolution. The
prototypes were operated with helium/isobutane gas mixtures and exposed to
cosmic rays, electron beams and radioactive sources. Direct measurements of the
single hit resolution performed with an external tracker returned a value of
110 m, consistent with the values obtained with indirect measurements
performed with the other prototypes.Comment: 18 pages, 18 figure
- …