13,135 research outputs found
Gold(III)-pyrrolidinedithiocarbamato Derivatives as Antineoplastic Agents
Transition metals offer many possibilities in developing potent
chemotherapeutic agents. They are endowed with a variety of
oxidation states, allowing for the selection of their coordination
numbers and geometries via the choice of proper ligands,
leading to the tuning of their final biological properties. We
report here on the synthesis, physico-chemical characterization,
and solution behavior of two gold(III) pyrrolidinedithiocarbamates
(PDT), namely [AuIIIBr2(PDT)] and [AuIIICl2(PDT)]. We
found that the bromide derivative was more effective than the
chloride one in inducing cell death for several cancer cell lines.
[AuIIIBr2(PDT)] elicited oxidative stress with effects on the permeability
transition pore, a mitochondrial channel whose
opening leads to cell death. More efficient antineoplastic strategies
are required for the widespread burden that is cancer. In
line with this, our results indicate that [AuIIIBr2(PDT)] is a promising
antineoplastic agent that targets cellular components with
crucial functions for the survival of tumor cells
Numerical investigation of the three-dimensional velocity fields induced by wave-structure interaction
Submerged shore-parallel breakwaters for coastal defence are a good compromise between the need to mitigate the effects of waves on the coast and the ambition to ensure the preservation of the landscape and water quality. In this work we simulate, in a fully three-dimensional form, the hydrodynamic effects induced by submerged breakwaters on incident wave trains with different wave height. The proposed three-dimensional non-hydrostatic finite-volume model is based on an integral form of the Navier-Stokes equations in σ-coordinates and is able to simulate the shocks in the numerical solution related to the wave breaking. The obtained numerical results show that the hydrodynamic phenomena produced by wave-structure interaction have features of three-dimensionality (undertow), that are locally important, and emphasize the need to use a non-hydrostatic fully-three-dimensional approach
Feasibility of transabdominal electrohysterography for analysis of uterine activity in nonpregnant women
Purpose: Uterine activity plays a key role in reproduction, and altered patterns of uterine contractility have been associated with important physiopathological conditions, such as subfertility, dysmenorrhea, and endometriosis. However, there is currently no method to objectively quantify uterine contractility outside pregnancy without interfering with the spontaneous contraction pattern. Transabdominal electrohysterography has great potential as a clinical tool to characterize noninvasively uterine activity, but results of this technique in nonpregnant women are poorly documented. The purpose of this study is to investigate the feasibility of transabdominal electrohysterography in nonpregnant women.
Methods: Longitudinal measurements were performed on 22 healthy women in 4 representative phases of the menstrual cycle. Twelve electrohysterogram-based indicators previously validated in pregnancy have been estimated and compared in the 4 phases of the cycle. Using the Tukey honest significance test, significant differences were defined for P values below .05.
Results: Half of the selected electrohysterogram-based indicators showed significant differences between menses and at least 1 of the other 3 phases, that is the luteal phase.
Conclusion: Our results suggest transabdominal electrohysterography to be feasible for analysis of uterine activity in nonpregnant women. Due to the lack of a golden standard, this feasibility study is indirectly validated based on physiological observations. However, these promising results motivate further research aiming at evaluating electrohysterography as a method to improve understanding and management of dysfunctions (possibly) related to altered uterine contractility, such as infertility, endometriosis, and dysmenorrhea
Velocity-dependent quantum phase slips in 1D atomic superfluids
Quantum phase slips are the primary excitations in one-dimensional
superfluids and superconductors at low temperatures but their existence in
ultracold quantum gases has not been demonstrated yet. We now study
experimentally the nucleation rate of phase slips in one-dimensional
superfluids realized with ultracold quantum gases, owing along a periodic
potential. We observe a crossover between a regime of temperature-dependent
dissipation at small velocity and interaction and a second regime of
velocity-dependent dissipation at larger velocity and interaction. This
behavior is consistent with the predicted crossover from thermally-assisted
quantum phase slips to purely quantum phase slips.Comment: 7 pages, 6 figure
Fluorescence Sensing Using DNA Aptamers in Cancer Research and Clinical Diagnostics
Among the various advantages of aptamers over antibodies, remarkable is their ability to tolerate a large number of chemical modifications within their backbone or at the termini without losing significant activity. Indeed, aptamers can be easily equipped with a wide variety of reporter groups or coupled to different carriers, nanoparticles, or other biomolecules, thus producing valuable molecular recognition tools effective for diagnostic and therapeutic purposes. This review reports an updated overview on fluorescent DNA aptamers, designed to recognize significant cancer biomarkers both in soluble or membrane-bound form. In many examples, the aptamer secondary structure switches induced by target recognition are suitably translated in a detectable fluorescent signal using either fluorescently-labelled or label-free aptamers. The fluorescence emission changes, producing an enhancement ("signal-on") or a quenching ("signal-off") effect, directly reflect the extent of the binding, thereby allowing for quantitative determination of the target in bioanalytical assays. Furthermore, several aptamers conjugated to fluorescent probes proved to be effective for applications in tumour diagnosis and intraoperative surgery, producing tumour-type specific, non-invasive in vivo imaging tools for cancer pre- and post-treatment assessment
Cytotoxic Evaluation of Elastomeric Dental Impression Materials on a Permanent Mouse Cell Line and on a Primary Human Gingival Fibroblast Culture
The need for clinically relevant in vitro tests of dental materials is widely recognized. Nearly all dental impression materials are introduced into the mouth just after mixing and allowed to set in contact with the oral tissues. Under these conditions, the materials may be toxic to cells or may sensitize the tissues. The aim of the present study is to evaluate the potential cytotoxicity of new preparations of elastomeric dental impression materials: A) four vinylpolysiloxanes: Elite H-D Putty and Elite H-D Light Body (Zhermack, Badia Polesine, Rovigo, Italy); Express Putty and Express Light Body (3M ESPE AG Seefeld, Germany) and B) two polyethers: Impregum Penta and Permadyne Penta L (3M ESPE AG Seefeld, Germany). The cytotoxicity of these impression materials were examined using two different cell lines: Balb/c 3T3 (permanent cell line) and human gingival fibroblasts (primary cell line) and their effects were studied by indirect and direct tests. The direct tests are performed by placing one sample of the impression materials in the centre of the Petri dishes at the time of the seeding of cells. The cell growth was evaluated at the 12th and 24th hours by cell number. The indirect tests were performed by incubating a square of 1 cm diameter impression material in 5 mL of medium at 37 °C for 24 hours (“eluates”). Subconfluent cultures are incubated with “eluates” for 24 hours. The MTT-formazan production is the method used for measuring the cell viability. The results indicate that: a) polyether materials are cytotoxic under both experimental conditions; b) among vinylpolysiloxanes, only Express Light Body (3M ESPE AG Seefeld, Germany) induces clear inhibition of cellular viability of Balb/c 3T3 evaluated by direct and indirect tests and c) the primary cell line is less sensitive to the toxic effect than the permanent cell line
The effect of serum withdrawal on the protein profile of quiescent human dermal fibroblasts in primary cell culture
The effect of serum deprivation on proliferating cells is well known, in contrast its role on primary cell cultures, at confluence, has not been deeply investigated. Therefore, in order to explore the response of quiescent cells to serum deprivation, ubiquitous mesenchymal cells, as normal human dermal fibroblasts, were grown, for 48 h after confluence, in the presence or absence of 10% FBS. Fibroblast behaviour (i.e. cell morphology, cell viability, ROS production and elastin synthesis) was evaluated morphologically and biochemically. Moreover, the protein profile was investigated by 2-DE and differentially expressed proteins were identified by MS. Serum withdrawal caused cell shrinkage but did not significantly modify the total cell number. ROS production, as evaluated by the dihydroethidium (DH2) probe, was increased after serum deprivation, whereas elastin synthesis, measured by a colorimetric method, was markedly reduced in the absence of serum. By proteome analysis, 41 proteins appeared to significantly change their expression, the great majority of protein changes were related to the cytoskeleton, the stress response and the glycolytic pathway. Data indicate that human dermal fibroblasts in primary cell culture can adapt themselves to environmental changes, without significantly altering cell viability, at least after a few days of treatment, even though serum withdrawal represents a stress condition capable to increase ROS production, to influence cell metabolism and to interfere with cell behaviour, favouring the expression of several age-related features
Making the Communication of CCS more "human"
CCS communication has proven a tough challenge, particularly for the difficulty in raising interest for the technology, which is still unknown to the majority of the population, and for the complexity of conveying information about its potential for reducing emissions. In this paper we present a research based effort for bringing CCS nearer to people, through visual material developed taking into account emotional needs related to the technology. The production of a short introductory film on CCS is illustrated and its testing with a sample of 700 high school students
- …
