653 research outputs found

    What People Are Writing About

    Get PDF

    Detection of Semi-Major Axis Drifts in 54 Near-Earth Asteroids: New Measurements of the Yarkovsky Effect

    Full text link
    We have identified and quantified semi-major axis drifts in Near-Earth Asteroids (NEAs) by performing orbital fits to optical and radar astrometry of all numbered NEAs. We focus on a subset of 54 NEAs that exhibit some of the most reliable and strongest drift rates. Our selection criteria include a Yarkovsky sensitivity metric that quantifies the detectability of semi-major axis drift in any given data set, a signal-to-noise metric, and orbital coverage requirements. In 42 cases, the observed drifts (~10^-3 AU/Myr) agree well with numerical estimates of Yarkovsky drifts. This agreement suggests that the Yarkovsky effect is the dominant non-gravitational process affecting these orbits, and allows us to derive constraints on asteroid physical properties. In 12 cases, the drifts exceed nominal Yarkovsky predictions, which could be due to inaccuracies in our knowledge of physical properties, faulty astrometry, or modeling errors. If these high rates cannot be ruled out by further observations or improvements in modeling, they would be indicative of the presence of an additional non-gravitational force, such as that resulting from a loss of mass of order a kilogram per second. We define the Yarkovsky efficiency f_Y as the ratio of the change in orbital energy to incident solar radiation energy, and we find that typical Yarkovsky efficiencies are ~10^-5.Comment: Accepted for publication by The Astronomical Journal. 42 pages, 8 figure

    Cardiovascular System in Preeclampsia and Beyond.

    Get PDF

    The Increasing Rotation Period of Comet 10P/Tempel 2

    Full text link
    We imaged comet 10P/Tempel 2 on 32 nights from 1999 April through 2000 March. R-band lightcurves were obtained on 11 of these nights from 1999 April through 1999 June, prior to both the onset of significant coma activity and perihelion. Phasing of the data yields a double-peaked lightcurve and indicates a nucleus rotational period of 8.941 +/- 0.002 hr with a peak-to-peak amplitude of ~0.75 mag. Our data are sufficient to rule out all other possible double-peaked solutions as well as the single- and triple- peaked solutions. This rotation period agrees with one of five possible solutions found in post-perihelion data from 1994 by Mueller and Ferrin (1996, Icarus, 123, 463-477), and unambiguously eliminates their remaining four solutions. We applied our same techniques to published lightcurves from 1988 which were obtained at an equivalent orbital position and viewing geometry as in 1999. We found a rotation period of 8.932 +/- 0.001 hr in 1988, consistent with the findings of previous authors and incompatible with our 1999 solution. This reveals that Tempel 2 spun-down by ~32 s between 1988 and 1999 (two intervening perihelion passages). If the spin-down is due to a systematic torque, then the rotation period prior to perihelion during the 2010 apparition is expected to be an additional 32 s longer than in 1999.Comment: Accepted by The Astronomical Journal; 22 pages of text, 3 tables, 6 figure

    Constraining the Physical Properties of Near-Earth Object 2009 BD

    Get PDF
    We report on Spitzer Space Telescope IRAC observations of near-Earth object (NEO) 2009 BD that were carried out in support of the NASA Asteroid Robotic Retrieval Mission (ARRM) concept. We did not detect 2009 BD in 25 hrs of integration at 4.5 micron. Based on an upper-limit flux density determination from our data, we present a probabilistic derivation of the physical properties of this object. The analysis is based on the combination of a thermophysical model with an orbital model accounting for the non-gravitational forces acting upon the body. We find two physically possible solutions. The first solution shows 2009 BD as a 2.9+/-0.3 m diameter rocky body (rho = 2.9+/-0.5 g cm-3) with an extremely high albedo of 0.85(+0.20/-0.10) that is covered with regolith-like material, causing it to exhibit a low thermal inertia (Gamma = 30(+20/-10) SI units). The second solution suggests 2009 BD to be a 4+/-1 m diameter asteroid with pV = 0.45(+0.35/-0.15) that consists of a collection of individual bare rock slabs (Gamma = 2000+/-1000 SI units, rho = 1.7(+0.7/-0.4) g cm-3). We are unable to rule out either solution based on physical reasoning. 2009 BD is the smallest asteroid for which physical properties have been constrained, in this case using an indirect method and based on a detection limit, providing unique information on the physical properties of objects in the size range smaller than 10 m.Comment: 28 pages, 8 figures, accepted for publication in Ap

    Physical Properties of Near-Earth Asteroid 2011 MD

    Get PDF
    We report on observations of near-Earth asteroid 2011 MD with the Spitzer Space Telescope. We have spent 19.9 h of observing time with channel 2 (4.5 {\mu}m) of the Infrared Array Camera and detected the target within the 2{\sigma} positional uncertainty ellipse. Using an asteroid thermophysical model and a model of nongravitational forces acting upon the object we constrain the physical properties of 2011 MD, based on the measured flux density and available astrometry data. We estimate 2011 MD to be 6 (+4/-2) m in diameter with a geometric albedo of 0.3 (+0.4/-0.2) (uncertainties are 1{\sigma}). We find the asteroid's most probable bulk density to be 1.1 (+0.7/-0.5) g cm^{-3}, which implies a total mass of (50-350) t and a macroporosity of >=65%, assuming a material bulk density typical of non-primitive meteorite materials. A high degree of macroporosity suggests 2011 MD to be a rubble-pile asteroid, the rotation of which is more likely to be retrograde than prograde.Comment: 20 pages, 4 figure

    Infrared Lightcurves of Near Earth Objects

    Get PDF
    We present lightcurves and derive periods and amplitudes for a subset of 38 near earth objects (NEOs) observed at 4.5 microns with the IRAC camera on the the Spitzer Space Telescope, many of them having no previously reported rotation periods. This subset was chosen from about 1800 IRAC NEO observations as having obvious periodicity and significant amplitude. For objects where the period observed did not sample the full rotational period, we derived lower limits to these parameters based on sinusoidal fits. Lightcurve durations ranged from 42 to 544 minutes, with derived periods from 16 to 400 minutes. We discuss the effects of lightcurve variations on the thermal modeling used to derive diameters and albedos from Spitzer photometry. We find that both diameters and albedos derived from the lightcurve maxima and minima agree with our previously published results, even for extreme objects, showing the conservative nature of the thermal model uncertainties. We also evaluate the NEO rotation rates, sizes, and their cohesive strengths.Comment: 16 pages, 4 figures, 3 tables, to appear in the Astrophysical Journal Supplement Serie
    corecore