2,996 research outputs found

    Fast computation of radar cross-section by fast multipole method in conjunction with lifting wavelet-like transform

    Get PDF
    The fast multipole method (FMM) in conjunction with the lifting wavelet-like transform scheme is proposed for the scattering analysis of differently shaped three-dimensional perfectly electrical conducting objects. As a flexible and efficient matrix compression technique, the proposed method can sparsify the aggregation matrix and disaggregation matrix in real time with compression ratio about 30%. The computational complexity and choice of proper wavelet are also discussed. Numerical simulation and complexity analysis have shown that the proposed method can speed up the aggregation and disaggregation steps of the FMM with lower memory requirements. © 2010 The Institution of Engineering and Technology.postprin

    Adaptive frequency sweep analysis for electromagnetic problems using the Thiele interpolating continued fractions

    Get PDF
    A direct rational approximation method based on Thiele interpolating continued fractions theory is proposed for fast frequency sweep analysis of electromagnetic problems. And an adaptive algorithm is also formed. Compared with the conventional rational approximation method, the proposed method can get a rational approximation directly without a great number of matrix inverse computations and doesn't need to allocate much memory for high derivatives of the dense impedance matrix. Meanwhile, the computation of surface currents by continued fractions can be sped up as compared with the traditional rational approximation. Numerical simulations for broad band scattering analysis of different shaped objects are discussed to shown the effectiveness of the present method. © 2010 IEEE.published_or_final_versionThe 2nd International Conference on Education Technology and Computer (ICETC 2010), Shanghai, China, 22-24 June 2010. In Proceedings of 2nd ICETC, 2010, v. 5, p. 126-12

    Geometry of reduced density matrices for symmetry-protected topological phases

    Full text link
    © 2016 American Physical Society. In this paper, we study the geometry of reduced density matrices for states with symmetry-protected topological (SPT) order. We observe ruled surface structures on the boundary of the convex set of low-dimensional projections of the reduced density matrices. In order to signal the SPT order using ruled surfaces, it is important that we add a symmetry-breaking term to the boundary of the system - no ruled surface emerges in systems without a boundary or when we add a symmetry-breaking term representing a thermodynamic quantity. Although the ruled surfaces only appear in the thermodynamic limit where the ground-state degeneracy is exact, we analyze the precision of our numerical algorithm and show that a finite-system calculation suffices to reveal the ruled surface structures

    Effect of swirl on premixed flame response at high forcing amplitudes

    Get PDF
    The response of a lean premixed flame subjected to acoustic perturbations is a complex phenomenon that depends highly on the type of flame and the operating conditions. Swirl introduces additional complexities due to the azimuthal component of the flow. In this work, a bluff body stabilised burner is studied under non-swirling and highly swirling conditions by placing a removable axial swirl upstream of the burner. The influence of swirl is assessed in terms of the flame describing function which is the ratio of heat release rate fluctuations response to incoming velocity oscillations and the spatial flame dynamics at high forcing amplitudes. The effect of flame interaction with the wall on the flame response is also explored by considering an enclosure with a larger diameter. It is found that swirl can affect the non-linear characteristics of the flame at medium frequencies (Strouhal numbers around unity) by altering the flame roll-up mechanisms. This is related to the variation of the local swirl number in space and time. For Strouhal numbers that are considerably lower than unity, the effect of swirl is small due to the high convective wavelengths. The size of the enclosure can also change the flame response characteristics, specifically for large forcing frequencies. With a small enclosure, where the flame interacts with the wall, the flame break-up is more significant and the vortex formation is interrupted. This does not happen when the enclosure is enlarged and it can affect the non-linear behaviour of the flame

    Large Eddy Simulation of a dual swirl gas turbine combustor: Flame/flow structures and stabilisation under thermoacoustically stable and unstable conditions

    Get PDF
    A laboratory gas turbine model combustor with dual-swirler configuration is in- vestigated using Large Eddy Simulation (LES) with a flamelet subgrid combus- tion model. Two partially premixed methane/air flames with different equivalence ratio and thermal power are simulated: one stably burning with an elongated V- shape and another undergoing pronounced thermoacoustic oscillations exhibiting a flat shape. Additionally, both flames feature a hydrodynamic instability in the form of a precessing vortex core (PVC). Detailed comparisons between experi- mental and LES results show that the different flow and reaction zone structures in these two flames are reproduced well. The various flow dynamics resulting from the PVC and thermoacoustic oscillations are also captured accurately in the simulation. Further analyses on the lifted swirl flame stabilisation using phase averaged statistics at the PVC frequencies reveal that the PVC-induced stagnation points provide an anchoring mechanism for both the stable and unstable flames, although in the latter case large self-excited pressure oscillations are present. It is found that the PVC is significantly influenced by these oscillations, being axially stretched and compressed at high and low pressures, respectively. However, the formation of flame leading edge due to the PVC is robust during these unstable processes and the azimuthal movement of the leading point is found to be strongly correlated with the rotation of the PVC in both flames, further confirming the vital role of the PVC in the stabilisation process of these lifted swirl flames
    • …
    corecore