CORE

A note on entire functions and their differences

Chuang-Xin Chen and Zong-Xuan Chen*

"Correspondence:
chzx@vip.sina.com
School of Mathematical Sciences, South China Normal University, Guangzhou, 510631, P.R. China

Abstract

In this paper, we prove that for a transcendental entire function $f(z)$ of finite order such that $\lambda(f-a(z))<\sigma(f)$, where $a(z)$ is an entire function and satisfies $\sigma(a(z))<1$, n is a positive integer and if $\Delta_{\eta}^{n} f(z)$ and $f(z)$ share the function $a(z) \mathrm{CM}$, where $\eta(\in \mathbb{C})$ satisfies $\Delta_{\eta}^{n} f(z) \not \equiv 0$, then $$
a(z) \equiv 0 \quad \text { and } \quad f(z)=c e^{c_{1} z},
$$

where $c_{1} c_{1}$ are two nonzero constants.
MSC: 39A10; 30D35
Keywords: complex difference; meromorphic function; Borel exceptional value; sharing value

1 Introduction and results

In this paper, we assume that the reader is familiar with the fundamental results and the standard notations of Nevanlinna's value distribution theory of meromorphic functions (see [1-3]). In addition, we use the notation $\lambda(f)$ for the exponent of convergence of the sequence of zeros of a meromorphic function f, and $\sigma(f)$ to denote the order growth of f. For a nonzero constant η, the forward differences $\Delta_{\eta}^{n} f(z)$ are defined (see [4,5]) by

$$
\begin{array}{ll}
\Delta_{\eta} f(z)=\Delta_{\eta}^{1} f(z)=f(z+\eta)-f(z) & \text { and } \\
\Delta_{\eta}^{n+1} f(z)=\Delta_{\eta}^{n} f(z+\eta)-\Delta_{\eta}^{n} f(z), \quad n=1,2, \ldots .
\end{array}
$$

Throughout this paper, we denote by $S(r, f)$ any function satisfying $S(r, f)=o(T(r, f))$ as $r \rightarrow \infty$, possibly outside a set of r of finite logarithmic measure. A meromorphic function $\alpha(z)$ is said to be a small function of $f(z)$ if $T(r, \alpha(z))=S(r, f)$, and we denote by $S(f)$ the set of functions which are small compared to $f(z)$.

Let f and g be two nonconstant meromorphic functions, and let $a \in \mathbb{C}$. We say that f and g share the value a CM (IM) provided that $f-a$ and $g-a$ have the same zeros counting multiplicities (ignoring multiplicities), that f and g share the value $\infty \mathrm{CM}$ (IM) provided that f and g have the same poles counting multiplicities (ignoring multiplicities). Using the same method, we can define that f and g share the function $a(z) \mathrm{CM}$ (IM), where $a(z) \in S(f) \cap S(g)$. Nevanlinna's four values theorem [6] says that if two nonconstant meromorphic functions f and g share four values CM , then $f \equiv g$ or f is a Möbius transformation of g. The condition ' f and g share four values CM' has been weakened to ' f and

[^0]g share two values CM and two values IM' by Gundersen [7, 8], as well as by Mues [9]. But whether the condition can be weakened to ' f and g share three values IM and another value CM' is still an open question.

In the special case, we recall a well-known conjecture by Brück [10].

Conjecture Let f be a nonconstant entire function such that hyper order $\sigma_{2}(f)<\infty$ and $\sigma_{2}(f)$ is not a positive integer. Iff and f^{\prime} share the finite value a $C M$, then

$$
f^{\prime}-a=c(f-a)
$$

where c is a nonzero constant.

The notation $\sigma_{2}(f)$ denotes hyper-order (see [11]) of $f(z)$ which is defined by

$$
\sigma_{2}(f)=\varlimsup_{r \rightarrow \infty} \frac{\log \log T(r, f)}{\log r}
$$

The conjecture has been verified in the special cases when $a=0$ [10], or when f is of finite order [12], or when $\sigma_{2}(f)<\frac{1}{2}$ [13].
Recently, many authors [14-17] started to consider sharing values of meromorphic functions with their shifts. Heittokangas et al. proved the following theorems.

Theorem A (See [15]) Letf be a meromorphic function with $\sigma(f)<2$, and let $c \in \mathbb{C}$. Iff (z) and $f(z+c)$ share the values $a(\in \mathbb{C})$ and $\infty C M$, then

$$
f(z+c)-a=\tau(f(z)-a)
$$

for some constant τ.
In [15], Heittokangas et al. give the example $f(z)=e^{z^{2}}+1$ which shows that $\sigma(f)<2$ cannot be relaxed to $\sigma(f) \leq 2$.

Theorem B (See [16]) Let f be a meromorphic function of finite order, let $c \in \mathbb{C}$. If $f(z)$ and $f(z+c)$ share three distinct periodic functions $a_{1}, a_{2}, a_{3} \in \hat{S}(f)$ with period $c C M$ (where $\hat{S}(f)=S(f) \cup\{\infty\})$, then $f(z)=f(z+c)$ for all $z \in \mathbb{C}$.

Recently, many results of complex difference equations have been rapidly obtained (see [18-25]). In the present paper, we utilize a complex difference equation to consider uniqueness problems.
The main purpose of this paper is to utilize a complex difference equation to study problems concerning sharing values of meromorphic functions and their differences. It is well known that $\Delta_{\eta} f(z)=f(z+\eta)-f(z)$ (where $\eta(\in \mathbb{C})$ is a constant satisfying $f(z+\eta)-f(z) \not \equiv 0$) is regarded as the difference counterpart of f^{\prime}. So, Chen and Yi [20] considered the problem that $\Delta_{\eta} f(z)$ and $f(z)$ share one value $a \mathrm{CM}$ and proved the following theorem.

Theorem C (See [20]) Letf be a finite order transcendental entire function which has a finite Borel exceptional value a, and let $\eta(\in \mathbb{C})$ be a constant such that $f(z+\eta) \not \equiv f(z)$. If
$\Delta_{\eta} f(z)=f(z+\eta)-f(z)$ and $f(z)$ share the value a CM, then

$$
a=0 \quad \text { and } \quad \frac{f(z+\eta)-f(z)}{f(z)}=A
$$

where A is a nonzero constant.

Question 1 What can be said if we consider the forward difference $\Delta_{\eta}^{n} f(z)$ and $f(z)$ share one value or one small function?

In this paper, we answer Question 1 and prove the following theorem.

Theorem 1.1 Let $f(z)$ be a finite order transcendental entire function such that $\lambda(f-a(z))<$ $\sigma(f)$, where $a(z)$ is an entire function and satisfies $\sigma(a)<1$. Let n be a positive integer. If $\Delta_{\eta}^{n} f(z)$ and $f(z)$ share $a(z) C M$, where $\eta(\in \mathbb{C})$ satisfies $\Delta_{\eta}^{n} f(z) \not \equiv 0$, then

$$
a(z) \equiv 0 \quad \text { and } \quad f(z)=c e^{c_{1} z}
$$

where c, c_{1} are two nonzero constants.

In the special case, if we take $a(z) \equiv a$ in Theorem 1.1, we can get the following corollary.

Corollary 1.1 Let $f(z)$ be a finite order transcendental entire function which has a finite Borel exceptional value a. Let n be a positive integer. If $\Delta_{n}^{n} f(z)$ and $f(z)$ share value a $C M$, where $\eta(\in \mathbb{C})$ satisfies $\Delta_{\eta}^{n} f(z) \not \equiv 0$, then

$$
a=0 \quad \text { and } \quad f(z)=c e^{c_{1} z}
$$

where c, c_{1} are two nonzero constants.
Remark 1.1 From Corollary 1.1, we know that $\frac{\Delta_{n}^{n} f(z)}{f(z)}=\left(e^{c_{1 \eta}}-1\right)^{n}$ and it shows that the quotient of $\Delta_{\eta}^{n} f(z)$ and $f(z)$ is related to η, n and c_{1}, but not related to c. On the other hand, Corollary 1.1 shows that if f has a nonzero finite Borel exceptional value b^{*}, then, for any constant η satisfying $\Delta_{\eta}^{n} f(z) \not \equiv 0$, the value b^{*} is not shared CM by $\Delta_{\eta}^{n} f(z)$ and $f(z)$. See the following example.

Example 1.1 Suppose that $f(z)=e^{z}+b^{*}$, where b^{*} is a nonzero finite value. Then f has a nonzero finite Borel exceptional value b^{*}. For any $\eta \neq 2 k \pi i, k \in \mathbb{Z}$, the value b^{*} is not shared CM by $\Delta_{n}^{n} f(z)$ and $f(z)$. Observe that $\Delta_{n}^{n} f(z)=\sum_{j=0}^{n}(-1)^{j} C_{n}^{j} f(z+(n-j) \eta)$, where C_{n}^{j} are the binomial coefficients. Thus, for any $\eta \neq 2 k \pi i, k \in \mathbb{Z}$, we have $\Delta_{\eta}^{n} f(z)=\left(e^{\eta}-1\right)^{n} \cdot e^{z}$. Thus, we can see that $f(z)-b^{*}=e^{z}$ has no zero, but $\Delta_{\eta}^{n} f(z)-b^{*}=\left(e^{\eta}-1\right)^{n} e^{z}-b^{*}$ has infinitely many zeros. Hence, the value b^{*} is not shared CM by $\Delta_{\eta}^{n} f(z)$ and $f(z)$.

In the special case, if we take $n=1$ in Theorem 1.1 and $n=1$ in Corollary 1.1, we can obtain the following corollaries.

Corollary 1.2 Let $f(z)$ be a finite order transcendental entire function such that $\lambda(f-$ $a(z))<\sigma(f)$, where $a(z)$ is an entire function and satisfies $\sigma(a)<1$. If $\Delta_{\eta} f(z)=f(z+\eta)-f(z)$
and $f(z)$ share $a(z) C M$, where $\eta(\in \mathbb{C})$ satisfies $f(z+\eta) \not \equiv f(z)$, then

$$
a(z) \equiv 0 \quad \text { and } \quad f(z)=c e^{c_{1} z}
$$

where c, c_{1} are two nonzero constants.

Corollary 1.3 Let $f(z)$ be a finite order transcendental entire function which has a finite Borel exceptional value a. If $\Delta_{\eta} f(z)=f(z+\eta)-f(z)$ and $f(z)$ share value a $C M$, where η $(\in \mathbb{C})$ satisfies $f(z+\eta) \not \equiv f(z)$, then

$$
a=0 \quad \text { and } \quad f(z)=c e^{c_{1} z}
$$

where c, c_{1} are two nonzero constants.

Remark 1.2 The Corollary 1.2 shows that if a nonzero polynomial $a(z)$ satisfies $\lambda(f-a)<$ $\sigma(f)$, then $a(z)$ is not shared CM by $\Delta f(z)$ and $f(z)$. For example, if we take $a(z) \equiv z$, and $\lambda(f-z)<\sigma(f)$ holds, then $\Delta f(z)$ and $f(z)$ do not have any common fixed point (counting multiplicities). See the following example.

Example 1.2 Suppose that $f(z)=e^{z}+z$. Then $f(z)$ satisfies $\lambda(f(z)-z)=0<1=\sigma(f)$ and has no fixed point. But for any $\eta \neq 2 k \pi i, k \in \mathbb{Z}$, the function $\Delta_{\eta} f(z)=f(z+\eta)-f(z)=$ $\left(e^{\eta}-1\right) e^{z}+\eta$ has infinitely many fixed points by Milloux's theorem (see [1,3]). Hence, the nonzero polynomial $a(z) \equiv z$ is not shared CM by $\Delta_{\eta} f(z)$ and $f(z)$.

Remark 1.3 From Corollary 1.3, we can see that under the hypothesis of Theorem C, we can get the expression of $f(z)$, that is, $f(z)=c e^{c_{1} z}$. Thus, we know that the constant A in Theorem C is related to η and c_{1}, but not related to c. Actually, from the proof of Lemma 2.9, we have $A=e^{c_{1} \eta}-1$ (obviously, we can obtain $A \neq-1$). Hence, Corollary 1.3 contains and improves Theorem C. Obviously, Theorem 1.1 generalizes Theorem C.

2 Lemmas for the proof of theorems

Lemma 2.1 (See [21]) Let f be a meromorphic function with a finite order σ, η be a nonzero constant. Let $\varepsilon>0$ be given, then there exists a subset $E \subset(1, \infty)$ with finite logarithmic measure such that for all z satisfying $|z|=r \notin E \cup[0,1]$, we have

$$
\exp \left\{-r^{\sigma-1+\varepsilon}\right\} \leq\left|\frac{f(z+\eta)}{f(z)}\right| \leq \exp \left\{r^{\sigma-1+\varepsilon}\right\}
$$

Lemma 2.2 (See $[11,26])$ Suppose that $n \geq 2$ and let $f_{1}(z), \ldots, f_{n}(z)$ be meromorphic functions and $g_{1}(z), \ldots, g_{n}(z)$ be entire functions such that
(i) $\sum_{j=1}^{n} f_{j}(z) \exp \left\{g_{j}(z)\right\}=0$;
(ii) when $1 \leq j<k \leq n, g_{j}(z)-g_{k}(z)$ is not constant;
(iii) when $1 \leq j \leq n, 1 \leq h<k \leq n$,

$$
T\left(r, f_{j}\right)=o\left\{T\left(r, \exp \left\{g_{h}-g_{k}\right\}\right)\right\} \quad(r \rightarrow \infty, r \notin E),
$$

where $E \subset(1, \infty)$ has finite linear measure or logarithmic measure.
Then $f_{j}(z) \equiv 0, j=1, \ldots, n$.
ε-set Following Hayman [1], we define an ε-set to be a countable union of open discs not containing the origin and subtending angles at the origin whose sum is finite. If E is an ε-set, then the set of $r \geq 1$, for which the circle $S(0, r)$ meets E, has finite logarithmic measure, and for almost all real θ, the intersection of E with the ray $\arg z=\theta$ is bounded.

Lemma 2.3 (See [4]) Letf be a function transcendental and meromorphic in the plane of order <1. Let $h>0$. Then there exists an ε-set E such that

$$
f(z+c)-f(z)=c f^{\prime}(z)(1+o(1)) \quad \text { as } z \rightarrow \infty \text { in } \mathbb{C} \backslash E,
$$

uniformly in c for $|c| \leq h$.

Lemma 2.4 (See [25]) Letf be a transcendental meromorphic solution of finite order ρ of a difference equation of the form

$$
U(z, f) P(z, f)=Q(z, f)
$$

where $U(z, f), P(z, f), Q(z, f)$ are difference polynomials such that the total degree $\operatorname{deg} U(z, f)=n \operatorname{in} f(z)$ and its shifts, and $\operatorname{deg} Q(z, f) \leq n$. Moreover, we assume that $U(z, f)$ contains just one term of maximal total degree in $f(z)$ and its shifts. Then, for each $\varepsilon>0$,

$$
m(r, P(z, f))=O\left(r^{\rho-1+\varepsilon}\right)+S(r, f)
$$

possibly outside of an exceptional set of finite logarithmic measure.

Remark 2.1 From the proof of Lemma 2.4 in [25], we can see that if the coefficients of $U(z, f), P(z, f), Q(z, f)$, namely $\alpha_{\lambda}(z)$, satisfy $m\left(r, \alpha_{\lambda}\right)=S(r, f)$, then the same conclusion still holds.

Lemma 2.5 (See [27]) Let $P_{n}(z), \ldots, P_{0}(z)$ be polynomials such that $P_{n} P_{0} \not \equiv 0$ and satisfy

$$
\begin{equation*}
P_{n}(z)+\cdots+P_{0}(z) \not \equiv 0 \tag{2.1}
\end{equation*}
$$

Then every finite order transcendental meromorphic solution $f(z)(\not \equiv 0)$ of the equation

$$
\begin{equation*}
P_{n}(z) f(z+n)+P_{n-1}(z) f(z+n-1)+\cdots+P_{0}(z) f(z)=0 \tag{2.2}
\end{equation*}
$$

satisfies $\sigma(f) \geq 1$, and $f(z)$ assumes every nonzero value $a \in \mathbb{C}$ infinitely often and $\lambda(f-a)=$ $\sigma(f)$.

Remark 2.2 If equation (2.2) satisfies condition (2.1) and all $P_{j}(z)$ are constants, we can easily see that equation (2.2) does not possess any nonzero polynomial solution.

Lemma 2.6 (See [27]) Let $F(z), P_{n}(z), \ldots, P_{0}(z)$ be polynomials such that $F P_{n} P_{0} \not \equiv 0$. Then every finite order transcendental meromorphic solution $f(z)(\not \equiv 0)$ of the equation

$$
\begin{equation*}
P_{n}(z) f(z+n)+P_{n-1}(z) f(z+n-1)+\cdots+P_{0}(z) f(z)=F \tag{2.3}
\end{equation*}
$$

satisfies $\lambda(f)=\sigma(f) \geq 1$.

Remark 2.3 From the proof of Lemma 2.5 in [27], we can see that if we replace $f(z+j)$ by $f(z+j \eta)(j=1, \ldots, n)$ in equation (2.2) or (2.3), then the corresponding conclusion still holds.

Lemma 2.7 (See [4]) Let f be a function transcendental and meromorphic in the plane which satisfies $\underline{\lim }_{r \rightarrow \infty} \frac{T(r, f)}{r}=0$. Then $g(z)=f(z+1)-f(z)$ and $G(z)=\frac{f(z+1)-f(z)}{f(z)}$ are both transcendental.

Remark 2.4 From the proof of Lemma 2.7 in [4], we can see that, under the same hypotheses of Lemma 2.7, we can obtain the following conclusion: $\Delta_{\eta} f(z)=f(z+\eta)-f(z)$ and $G(z)=\frac{\Delta_{\eta} f(z)}{f(z)}=\frac{f(z+\eta)-f(z)}{f(z)}$ are both transcendental.

Lemma 2.8 Let $f(z)=H(z) e^{c_{1} z}$, where $H(z)(\not \equiv 0)$ is an entire function such that $\sigma(H)<1$ and c_{1} is a nonzero constant. If $\Delta_{\eta}^{n} f(z) \not \equiv 0$ for some constant η, and

$$
\begin{equation*}
\frac{\Delta_{n}^{n} f(z)}{f(z)}=A \tag{2.4}
\end{equation*}
$$

holds, where A is a constant, then $H(z)$ is a constant.

Proof From $\Delta_{\eta}^{n} f(z) \not \equiv 0$, we can see that $A \neq 0$. In order to prove that $H(z)$ is a constant, we only need to prove $H^{\prime}(z) \equiv 0$. Substituting $f(z)=H(z) e^{c_{1} z}$ into (2.4), we can obtain

$$
\begin{equation*}
\sum_{j=0}^{n-1}(-1)^{j} C_{n}^{j} e^{(n-j) c_{1} \eta} H(z+(n-j) \eta)+\left((-1)^{n}-A\right) H(z)=0 \tag{2.5}
\end{equation*}
$$

First, we assert that the sum of all coefficients of equation (2.5) is equal to zero, that is,

$$
\begin{equation*}
e^{n c_{1} \eta}-C_{n}^{1} e^{(n-1) c_{1} \eta}+\cdots+(-1)^{n-1} C_{n}^{n-1} e^{c_{1} \eta}+\left((-1)^{n}-A\right)=0 . \tag{2.6}
\end{equation*}
$$

On the contrary, we suppose that

$$
e^{n c_{1} \eta}-C_{n}^{1} e^{(n-1) c_{1} \eta}+\cdots+(-1)^{n-1} C_{n}^{n-1} e^{c_{1} \eta}+\left((-1)^{n}-A\right) \neq 0 .
$$

Thus, applying Lemma 2.5 and Remarks 2.2-2.3 to (2.5), we have $\sigma(H) \geq 1$, a contradiction. Hence, (2.6) holds. Thus, by (2.6) and (2.5), we have

$$
\begin{equation*}
\sum_{j=0}^{n-1}(-1)^{j} C_{n}^{j} e^{(n-j) c_{1} \eta}(H(z+(n-j) \eta)-H(z))=0 \tag{2.7}
\end{equation*}
$$

By Lemma 2.3, we see that there exists an ε-set E such that for $j=1,2, \ldots, n$,

$$
\begin{equation*}
H(z+j \eta)-H(z)=j \eta H^{\prime}(z)(1+o(1)) \quad \text { as } z \rightarrow \infty \text { in } \mathbb{C} \backslash E \tag{2.8}
\end{equation*}
$$

Substituting (2.8) into (2.7), we can get

$$
\begin{equation*}
\eta H^{\prime}(z) \cdot K+\eta H^{\prime}(z) \cdot K \cdot o(1)=0 \quad \text { as } z \rightarrow \infty \text { in } \mathbb{C} \backslash E \tag{2.9}
\end{equation*}
$$

where K is a constant and satisfies

$$
K=n e^{n c_{1} \eta}-C_{n}^{1}(n-1) e^{(n-1) c_{1} \eta}+\cdots+(-1)^{n-2} C_{n}^{n-2} 2 e^{2 c_{1} \eta}+(-1)^{n-1} C_{n}^{n-1} e^{c_{1} \eta} .
$$

Secondly, we assert that $K \neq 0$. If $n=1$, then $K=e^{c_{1} \eta} \neq 0$; if $n \geq 2$, on the contrary, we suppose that $K=0$. Then, for $j=0,1, \ldots, n-1$, noting that

$$
C_{n}^{j} \cdot(n-j)=\frac{n!\cdot(n-j)}{(n-j)!j!}=\frac{(n-1)!\cdot n}{(n-1-j)!j!}=n C_{n-1}^{j},
$$

we have

$$
\sum_{j=0}^{n-1}(-1)^{j} C_{n}^{j}(n-j) e^{(n-j) c_{1} \eta}=n e^{c_{1} \eta}\left(e^{c_{1} \eta}-1\right)^{n-1}=0
$$

Thus, we can obtain from the equality above that $e^{c_{1} \eta}=1$ since $n-1 \geq 1$. By (2.6) we have $A=\left(e^{c_{1} \eta}-1\right)^{n}=0$, which contradicts $A \neq 0$. Hence $K \neq 0$ and (2.9) implies $H^{\prime}(z) \not \equiv 0$. Thus, we can know that $H(z)$ is a nonzero constant.

Thus, Lemma 2.8 is proved.

Lemma 2.9 Suppose that $f(z)$ is a finite order transcendental entire function such that $\lambda(f-a(z))<\sigma(f)$, where $a(z)$ is an entire function and satisfies $\sigma(a)<1$. Let n be a positive integer. If $\Delta_{n}^{n} f(z) \not \equiv 0$ for some constant $\eta(\in \mathbb{C})$, and

$$
\begin{equation*}
\frac{\Delta_{n}^{n} f(z)-a(z)}{f(z)-a(z)}=A \tag{2.10}
\end{equation*}
$$

holds, where A is a constant, then

$$
a(z) \equiv 0, \quad A \neq 0 \quad \text { and } \quad f(z)=c e^{c_{1} z}
$$

where c, c_{1} are two nonzero constants.

Proof Since $f(z)$ is a transcendental entire function of finite order and satisfies $\lambda(f-a(z))<$ $\sigma(f)$, we can write $f(z)$ in the form

$$
\begin{equation*}
f(z)=a(z)+H(z) e^{h(z)}, \tag{2.11}
\end{equation*}
$$

where $H(\not \equiv 0)$ is an entire function, h is a polynomial with $\operatorname{deg} h=k(k \geq 1), H$ and h satisfy

$$
\begin{equation*}
\lambda(H)=\sigma(H)=\lambda(f-a(z))<\sigma(f)=\operatorname{deg} h . \tag{2.12}
\end{equation*}
$$

First, we assert that $a(z) \equiv 0$. Substituting (2.11) into (2.10), we can get that

$$
\begin{equation*}
\frac{\Delta_{\eta}^{n} f(z)-a(z)}{f(z)-a(z)}=\frac{\sum_{j=0}^{n}(-1)^{j} C_{n}^{j} H(z+(n-j) \eta) e^{h(z+(n-j) \eta)}+b(z)}{H(z) e^{h(z)}}=A, \tag{2.13}
\end{equation*}
$$

where $b(z)=\Delta_{\eta}^{n} a(z)-a(z)$. Rewrite (2.13) in the form

$$
\begin{equation*}
\sum_{j=0}^{n-1}(-1)^{j} C_{n}^{j} H(z+(n-j) \eta) e^{h(z+(n-j) \eta)-h(z)}+\left((-1)^{n}-A\right) H(z)=-b(z) e^{-h(z)} \tag{2.14}
\end{equation*}
$$

Suppose that $b(z) \not \equiv 0$. Then, from $\sigma(H(z+(n-j) \eta))=\sigma(H(z))<\operatorname{deg} h(z)=k(j=$ $0,1, \ldots, n-1), \operatorname{deg}(h(z+(n-j) \eta)-h(z))=k-1$ and $\sigma(b(z)) \leq \sigma(a(z))<1 \leq k$, we can see that the order of growth of the left-hand side of (2.14) is less than k, and the order of growth of the right-hand side of (2.14) is equal to k. This is a contradiction. Hence, $b(z) \equiv \Delta_{\eta}^{n} a(z)-a(z) \equiv 0$. Namely,

$$
\begin{equation*}
a(z+n \eta)-C_{n}^{1} a(z+(n-1) \eta)+\cdots+(-1)^{n-1} C_{n}^{n-1} a(z+\eta)+\left((-1)^{n}-1\right) a(z)=0 . \tag{2.15}
\end{equation*}
$$

Suppose that $a(z) \not \equiv 0$. Note that the sum of all coefficients of (2.15) does not vanish. Then we can apply Lemma 2.5 and Remarks 2.2-2.3 to (2.15) and obtain $\sigma(a(z)) \geq 1$, which contradicts our hypothesis. Hence, $a(z) \equiv 0$. Thus, (2.13) can be rewritten as

$$
\begin{equation*}
\frac{\Delta_{n}^{n} f(z)}{f(z)}=\frac{\sum_{j=0}^{n}(-1)^{j} C_{n}^{j} H(z+(n-j) \eta) e^{h(z+(n-j) \eta)-h(z)}}{H(z)}=A . \tag{2.16}
\end{equation*}
$$

Secondly, we prove that $A \neq 0$. In fact, if $A=0$, we obtain from (2.16) that $\Delta_{\eta}^{n} f(z) \equiv 0$, which contradicts our hypothesis.
Thirdly, we prove that $\sigma(f)=k=1$. On the contrary, we suppose that $\sigma(f)=k \geq 2$. Thus, we will deduce a contradiction for cases $A=(-1)^{n}$ and $A \neq(-1)^{n}$, respectively.
Case 1. Suppose that $A=(-1)^{n}$. Thus, for a positive integer n, there are three subcases: (1) $n=1$; (2) $n=2$; (3) $n \geq 3$.

Subcase 1.1. Suppose that $n=1$. Then, by $A=-1$, we can obtain from (2.16) that

$$
e^{h(z+\eta)-h(z)}=(1+A) \cdot \frac{H(z)}{H(z+\eta)} \equiv 0,
$$

a contradiction.
Subcase 1.2. Suppose that $n=2$. Then, by $A=(-1)^{2}=1$ and (2.16), we have

$$
\begin{equation*}
e^{h(z+2 \eta)-h(z+\eta)}=\frac{2 H(z+\eta)}{H(z+2 \eta)} \tag{2.17}
\end{equation*}
$$

Set $Q_{1}(z)=\frac{2 H(z+2 \eta)}{H(z+\eta)}$. Then, from (2.17), we can know that $Q_{1}(z)$ is a nonconstant entire function. Set $\sigma(H)=\sigma_{1}$. Then $\sigma_{1}<\sigma(f)=k$. By Lemma 2.1, we see that for any given ε_{1} $\left(0<3 \varepsilon_{1}<k-\sigma_{1}\right)$, there exists a set $E_{1} \subset(1, \infty)$ of finite logarithmic measure such that for all z satisfying $|z|=r \notin[0,1] \cup E_{1}$, we have

$$
\begin{equation*}
\exp \left\{-r^{\sigma_{1}-1+\varepsilon_{1}}\right\} \leq\left|\frac{2 H(z+\eta)}{H(z+2 \eta)}\right| \leq \exp \left\{r^{\sigma_{1}-1+\varepsilon_{1}}\right\} . \tag{2.18}
\end{equation*}
$$

Since $Q_{1}(z)$ is an entire function, by (2.18), we have

$$
T\left(r, Q_{1}(z)\right)=m\left(r, Q_{1}(z)\right) \leq m\left(r, \frac{2 H(z+\eta)}{H(z+2 \eta)}\right)+O(1) \leq r^{\sigma_{1}-1+\varepsilon_{1}}
$$

so that $\sigma\left(Q_{1}(z)\right) \leq \sigma_{1}-1+\varepsilon_{1}<k-1$. Thus, by $\operatorname{deg}(h(z+\eta)-h(z))=k-1$ and $\sigma\left(Q_{1}\right)<k-1$, we can see that the order of growth of the left-hand side of (2.17) is equal to $k-1$, and the order of growth of the right-hand side of (2.17) is less than $k-1$. This is a contradiction.

Subcase 1.3. Suppose that $n \geq 3$. Then we can obtain from (2.16) that

$$
\begin{equation*}
\sum_{j=0}^{n-2}(-1)^{j} C_{n}^{j} \frac{H(z+(n-j) \eta)}{H(z+\eta)} e^{h(z+(n-j) \eta)-h(z+\eta)}+(-1)^{n-1} C_{n}^{n-1}=0 . \tag{2.19}
\end{equation*}
$$

Set $Q_{2}(z)=e^{h(z+2 \eta)-h(z+\eta)}$. Then $Q_{2}(z)$ is a transcendental entire function since $\sigma\left(Q_{2}(z)\right)=$ $k-1 \geq 1$. For $j=3,4, \ldots, n$, we have

$$
e^{h(z+j \eta)-h(z+\eta)}=Q_{2}(z+(j-2) \eta) Q_{2}(z+(j-3) \eta) \cdots Q_{2}(z) .
$$

Thus, (2.19) can be rewritten as

$$
\begin{equation*}
U_{2}\left(z, Q_{2}(z)\right) \cdot Q_{2}(z)=(-1)^{n} C_{n}^{n-1} \tag{2.20}
\end{equation*}
$$

where

$$
\begin{aligned}
U_{2}\left(z, Q_{2}(z)\right)= & \frac{H(z+n \eta)}{H(z+\eta)} Q_{2}(z+(n-2) \eta) Q_{2}(z+(n-3) \eta) \cdots Q_{2}(z+\eta) \\
& -C_{n}^{1} \frac{H(z+(n-1) \eta)}{H(z+\eta)} Q_{2}(z+(n-3) \eta) Q_{2}(z+(n-4) \eta) \cdots Q_{2}(z+\eta) \\
& +\cdots+(-1)^{n-2} C_{n}^{n-2} \frac{H(z+2 \eta)}{H(z+\eta)} .
\end{aligned}
$$

Noting that $(-1)^{n} C_{n}^{n-1} \neq 0$, we can see that $U_{2}\left(z, Q_{2}(z)\right) \not \equiv 0$. Set $\sigma(H)=\sigma_{2}$. Then $\sigma_{2}<k$. Since $Q_{2}(z)$ is of regular growth and $\sigma\left(Q_{2}(z)\right)=k-1$, for any given $\varepsilon_{2}\left(0<3 \varepsilon_{2}<k-\sigma_{2}\right)$ and all $r>r_{0}(>0)$, we have

$$
\begin{equation*}
T\left(r, Q_{2}(z)\right)>r^{k-1-\varepsilon_{2}} . \tag{2.21}
\end{equation*}
$$

By Lemma 2.1, we see that for ε_{2}, there exists a set $E_{2} \subset(1, \infty)$ of finite logarithmic measure such that for all z satisfying $|z|=r \notin[0,1] \cup E_{2}$, we have

$$
\begin{equation*}
\exp \left\{-r^{\sigma_{2}-1+\varepsilon_{2}}\right\} \leq\left|\frac{H(z+j \eta)}{H(z+\eta)}\right| \leq \exp \left\{r^{\sigma_{2}-1+\varepsilon_{2}}\right\} \quad(j=2,3, \ldots, n) . \tag{2.22}
\end{equation*}
$$

Thus, from (2.21) and (2.22), we can get that for $j=2,3, \ldots, n$,

$$
\frac{m\left(r, \frac{H(z+j \eta)}{H(z+\eta)}\right)}{T\left(r, Q_{2}(z)\right)} \leq \frac{r^{\sigma_{2}-1+\varepsilon_{2}}}{r^{k-1-\varepsilon_{2}}} \rightarrow 0 \quad\left(r \rightarrow \infty \text { and } r \notin[0,1] \cup E_{2}\right),
$$

that is,

$$
\begin{equation*}
m\left(r, \frac{H(z+j \eta)}{H(z+\eta)}\right)=S\left(r, Q_{2}\right) \quad(j=2,3, \ldots, n) \tag{2.23}
\end{equation*}
$$

Noting that $\operatorname{deg}_{Q_{2}} U\left(z, Q_{2}\right)=n-2 \geq 1$ and by Lemma 2.4 and Remark 2.1, we have

$$
T\left(r, Q_{2}\right)=m\left(r, Q_{2}\right)=S\left(r, Q_{2}\right),
$$

a contradiction.
Case 2. Suppose that $A \neq(-1)^{n}$. Thus, for a positive integer n, there are two subcases: (1) $n=1$; (2) $n \geq 2$.

Subcase 2.1. Suppose that $n=1$. Thus, (2.16) can be rewritten as

$$
\frac{H(z+\eta)}{H(z)}=\left(A-(-1)^{n}\right) e^{h(z)-h(z+\eta)}=(A+1) e^{h(z)-h(z+\eta)} .
$$

Noting the $A+1 \neq 0$, we can use the same method as in the proof of Subcase 1.2 and deduce a contradiction.
Subcase 2.2. Suppose that $n \geq 2$. Then we can obtain from (2.16) that

$$
\begin{equation*}
\sum_{j=0}^{n-1}(-1)^{j} C_{n}^{j} \frac{H(z+(n-j) \eta)}{H(z)} e^{h(z+(n-j) \eta)-h(z)}+(-1)^{n}-A=0 \tag{2.24}
\end{equation*}
$$

Set $Q_{3}(z)=e^{h(z+\eta)-h(z)}$. Then $Q_{3}(z)$ is a transcendental entire function since $\sigma\left(Q_{3}(z)\right)=k-$ $1 \geq 1$. For $j=1,2, \ldots, n$, we have

$$
e^{h(z+j \eta)-h(z)}=Q_{3}(z+(j-1) \eta) Q_{3}(z+(j-2) \eta) \cdots Q_{3}(z) .
$$

Thus, (2.24) can be rewritten as

$$
\begin{equation*}
U_{3}\left(z, Q_{3}(z)\right) \cdot Q_{3}(z)=A-(-1)^{n} \tag{2.25}
\end{equation*}
$$

where

$$
\begin{aligned}
U_{3}\left(z, Q_{3}(z)\right)= & \frac{H(z+n \eta)}{H(z)} Q_{3}(z+(n-1) \eta) Q_{3}(z+(n-2) \eta) \cdots Q_{3}(z+\eta) \\
& -C_{n}^{1} \frac{H(z+(n-1) \eta)}{H(z)} Q_{3}(z+(n-2) \eta) Q_{3}(z+(n-3) \eta) \cdots Q_{3}(z+\eta) \\
& +\cdots+(-1)^{n-1} C_{n}^{n-1} \frac{H(z+\eta)}{H(z)} .
\end{aligned}
$$

We can see that $U_{3}\left(z, Q_{3}(z)\right) \not \equiv 0$ since $A-(-1)^{n} \neq 0$. Noting that $\operatorname{deg}_{Q_{3}} U_{3}\left(z, Q_{3}(z)\right)=$ $n-1 \geq 1$, we can use the same method as in the proof of Subcase 1.3 and deduce a contradiction.
Thus, we have proved that $\sigma(f)=k=1$. And $f(z)$ can be written as

$$
\begin{equation*}
f(z)=H(z) e^{c_{1} z+c_{0}}=H^{*}(z) e^{c_{1} z}, \tag{2.26}
\end{equation*}
$$

where $c_{0}, c_{1}(\neq 0)$ are two constants and $H^{*}(z)=e^{c_{0}} H(z)(\not \equiv 0)$ is an entire function and satisfies

$$
\begin{equation*}
\sigma\left(H^{*}(z)\right)=\lambda\left(H^{*}(z)\right)=\lambda(f)<\sigma(f)=1 . \tag{2.27}
\end{equation*}
$$

Thus, by (2.26), (2.27), (2.16) and Lemma 2.8, we can get that $H^{*}(z)$ is a nonzero constant, and so, $f(z)$ can be written as

$$
f(z)=c e^{c_{1} z}
$$

where c, c_{1} are two nonzero constants.
Thus, Lemma 2.9 is proved.

Remark 2.5 From the proof of Lemma 2.9 or Remark 1.3, we can see that $A \neq-1$ in Lemma 2.9 when $n=1$ and Theorem C. Unfortunately, we cannot obtain $A \neq(-1)^{n}$ when $n \geq 2$ in Lemma 2.9. This is because we can get a contradiction from the equality $e^{c_{1} \eta}-1=-1$, but we cannot obtain a contradiction from the equality $\left(e^{c_{1} \eta}-1\right)^{n}=(-1)^{n}$ when $n \geq 2$.

3 Proof of Theorem 1.1

By the hypotheses of Theorem 1.1, we can write $f(z)$ in the form (2.11), and (2.12) holds. Since $\Delta_{\eta}^{n} f(z)$ and $f(z)$ share an entire function $a(z) C M$, then

$$
\begin{equation*}
\frac{\Delta_{\eta}^{n} f(z)-a(z)}{f(z)-a(z)}=\frac{\sum_{j=0}^{n}(-1)^{n-j} C_{n}^{j} H(z+j \eta) e^{h(z+j \eta)}+b(z)}{H(z) e^{h(z)}}=e^{P(z)}, \tag{3.1}
\end{equation*}
$$

where $P(z)$ is a polynomial and $b(z)=\Delta_{\eta}^{n} a(z)-a(z)$. Obviously, $\sigma(b(z)) \leq \sigma(a(z))<1$.
First step. We prove

$$
\begin{equation*}
\frac{\Delta_{n}^{n} f(z)-a(z)}{f(z)-a(z)}=A, \tag{3.2}
\end{equation*}
$$

where $A(\neq 0)$ is a constant. If $P(z) \equiv 0$, then, by (3.1), we see that (3.2) holds and $A=1$.
Now suppose that $P(z) \not \equiv 0$ and $\operatorname{deg} P(z)=s$. Set

$$
\begin{equation*}
h(z)=a_{k} z^{k}+a_{k-1} z^{k-1}+\cdots+a_{0}, \quad P(z)=b_{s} z^{s}+b_{s-1} z^{s-1}+\cdots+b_{0} \tag{3.3}
\end{equation*}
$$

where $k=\sigma(f) \geq 1, a_{k}(\neq 0), a_{k-1}, \ldots, a_{0}, b_{s}(\neq 0), b_{s-1}, \ldots, b_{0}$ are constants. By (3.1), we can see that $0 \leq \operatorname{deg} P=s \leq \operatorname{deg} h=k$.

In this case, we prove that $P(z)$ is a constant, that is, $s=0$. To this end, we will deduce a contradiction for the cases $s=k$ and $1 \leq s<k$, respectively.

Case 1 . Suppose that $1 \leq s=k$. Thus, there are two subcases: (1) $a(z) \neq 0$; (2) $a(z) \equiv 0$.
Subcase 1.1. Suppose that $a(z) \not \equiv 0$. First we suppose that $b_{k} \neq-a_{k}$. Then (3.1) is rewritten as

$$
\begin{equation*}
g_{11}(z) e^{P(z)}+g_{12} e^{-h(z)}+g_{13} e^{h_{0}(z)}=0 \tag{3.4}
\end{equation*}
$$

where $h_{0}(z) \equiv 0$ and

$$
g_{11}(z)=-H(z) ; \quad g_{12}(z)=b(z) ; \quad g_{13}(z)=\sum_{j=0}^{n}(-1)^{n-j} C_{n}^{j} H(z+j \eta) e^{h(z+j \eta)-h(z)}
$$

Since $\sigma(H)<k, \sigma(b)<1 \leq k$ and $\operatorname{deg}(h(z+j \eta)-h(z))=k-1(j=1,2, \ldots, n)$, we can see that $\sigma\left(g_{1 m}(z)\right)<k(m=1,2,3)$. On the other hand, by $b_{k} \neq-a_{k}$, we can see that $\operatorname{deg}(P-(-h))=$ $\operatorname{deg}\left(P-h_{0}\right)=\operatorname{deg}\left(-h-h_{0}\right)=k$. Since $e^{P-(-h)}, e^{P-h_{0}}$ and $e^{-h-h_{0}}$ are of regular growth, and $\sigma\left(g_{1 m}\right)<k(m=1,2,3)$, we can see that for $m=1,2,3$,

$$
\begin{equation*}
T\left(r, g_{1 m}\right)=o\left(T\left(r, e^{P-(-h)}\right)\right)=o\left(T\left(r, e^{P-h_{0}}\right)\right)=o\left(T\left(r, e^{-h-h_{0}}\right)\right) . \tag{3.5}
\end{equation*}
$$

Thus, applying Lemma 2.2 to (3.4), by (3.5), we can obtain $g_{1 m}(z) \equiv 0(m=1,2,3)$. Clearly, this is a contradiction.

Now we suppose that $b_{k}=-a_{k}$. Then (3.1) is rewritten as

$$
\begin{equation*}
\left[H(z) e^{P(z)+h(z)}-b(z)\right] e^{-h(z)}=\sum_{j=0}^{n}(-1)^{n-j} C_{n}^{j} H(z+j \eta) e^{h(z+j \eta)-h(z)} \tag{3.6}
\end{equation*}
$$

We affirm that $H(z) e^{P(z)+h(z)}-b(z) \not \equiv 0$. In fact, if $H(z) e^{P(z)+h(z)}-b(z) \equiv 0$, then, by (3.6), we can obtain

$$
\begin{equation*}
\sum_{j=1}^{n}(-1)^{n-j} C_{n}^{j} H(z+j \eta) e^{h(z+j \eta)-h(z)}+(-1)^{n} H(z) \equiv 0 \tag{3.7}
\end{equation*}
$$

this is the special case of (2.14) when $b(z) \equiv 0$ and $A=0$. Hence, using the same method as in the proof of Case 2 in the proof of Lemma 2.9, we can get that $\sigma(f)=k=1$. Hence, substituting $h(z)=c_{1} z+c_{0}$ into (3.7), we have

$$
\begin{equation*}
\sum_{j=0}^{n}(-1)^{j} C_{n}^{j} e^{(n-j) c_{1} \eta} H(z+(n-j) \eta)=0 . \tag{3.8}
\end{equation*}
$$

On this occasion, we assert that $\left(e^{c_{1} \eta}-1\right)^{n}=0$. On the contrary, we suppose that ($e^{c_{1} \eta}-$ $1)^{n} \neq 0$. Then the sum of all coefficients of (3.8) is $\left(e^{\eta}-1\right)^{n}$, which does not vanish. By Lemma 2.5 and Remarks 2.2-2.3, we have $\sigma(H) \geq 1$, a contradiction. Hence, $\left(e^{c_{1} \eta}-1\right)^{n}=0$. Thus, $e^{c_{1} \eta}=1$. Substituting it into (3.8), we have

$$
\begin{equation*}
\sum_{j=0}^{n}(-1)^{j} C_{n}^{j} H(z+(n-j) \eta)=0 \tag{3.9}
\end{equation*}
$$

First, we suppose that $H(z)$ is transcendental. Then, noting that $\sigma(H)<1$ implies $\underline{\lim }_{r \rightarrow \infty} \frac{T(r, H)}{r}=0$, by Lemma 2.7 and Remark 2.4, we know that $\Delta_{\eta} H(z)=H(z+\eta)-H(z)$ is transcendental. Moreover, $\sigma\left(\Delta_{\eta} H(z)\right) \leq \sigma(H(z))<1$ implies $\underline{\lim }_{r \rightarrow \infty} \frac{T\left(r, \Delta_{\eta} H\right)}{r}=0$. Repeating the process above $n-1$ times, we can see that $\Delta_{\eta}^{n} H(z)$ is transcendental. That is, the left-hand side of (3.9) is a transcendental function. Hence (3.9) is impossible.

Secondly, we suppose that $H(z)$ is a nonzero polynomial. Then, noting that $b_{k}=-a_{k}$, we can see that $e^{p(z)+h(z)}$ is a nonzero constant. Thus, from $b(z)=H(z) e^{p(z)+h(z)}$, we can know that $b(z)$ is a nonzero polynomial. Thus, applying Lemma 2.6 to the equation $\Delta_{\eta}^{n} a(z)-a(z)=b(z)$ and by Remark 2.3, we have $\sigma(a) \geq 1$, a contradiction. Hence, $H(z) e^{P(z)+h(z)}-b(z) \not \equiv 0$. Thus, since $\operatorname{deg}(P+h) \leq k-1, \operatorname{deg}(-h)=k, \operatorname{deg}(h(z+j \eta)-h(z))=$ $k-1(j=1,2, \ldots, n)$ and $\sigma(H)<k$, we see that the order of growth of the left-hand side of
(3.6) is equal to k, and the order of growth of the right-hand side of (3.6) is less than k. This is a contradiction.

Subcase 1.2. Suppose that $a(z) \equiv 0$. Then (3.1) is rewritten as

$$
\begin{equation*}
H(z) e^{P(z)}=\sum_{j=0}^{n}(-1)^{n-j} C_{n}^{j} H(z+j \eta) e^{h(z+j \eta)-h(z)} . \tag{3.10}
\end{equation*}
$$

Since $H(z) \not \equiv 0, \sigma(H)<k, \operatorname{deg} P=s=k$ and $\operatorname{deg}(h(z+j \eta)-h(z))=k-1(j=1,2, \ldots, n)$, we can see that the order of growth of the left-hand side of (3.10) is equal to k, and the order of growth of the right-hand side of (3.10) is less than k. This is a contradiction.

Case 2. Suppose that $1 \leq s<k$. Thus, there are two subcases: (1) $a(z) \not \equiv 0 ;(2) a(z) \equiv 0$.
Subcase 2.1. Suppose that $a(z) \not \equiv 0$. Then, by (3.1), we can obtain

$$
\begin{equation*}
\sum_{j=0}^{n}(-1)^{n-j} C_{n}^{j} H(z+j \eta) e^{h(z+j \eta)-h(z)}-H(z) e^{P(z)}=b(z) e^{-h(z)} \tag{3.11}
\end{equation*}
$$

We assert that $b(z) \not \equiv 0$. In fact, if $b(z) \equiv 0$, then (2.15) obviously holds. Hence, using the same method as in the proof of Lemma 2.9, by Lemma 2.5 and Remarks 2.2-2.3, we can get that $\sigma(a) \geq 1$, a contradiction. Hence, $b(z) \not \equiv 0$. Since $\operatorname{deg} h=k, \operatorname{deg}(h(z+j \eta)-h(z))=k-1$ $(j=1,2, \ldots, n), \operatorname{deg} P=s<k$ and $\sigma(H)<k$, we see that the order of growth of the left-hand side of (3.11) is less than k, and the order of growth of the right-hand side of (3.11) is equal to k. This is a contradiction.
Subcase 2.2. Suppose that $a(z) \equiv 0$. Then, by (3.1), we obtain

$$
\begin{equation*}
\sum_{j=1}^{n}(-1)^{n-j} C_{n}^{j} \frac{H(z+j \eta)}{H(z)} e^{h(z+j \eta)-h(z)}+(-1)^{n}=e^{P(z)} \tag{3.12}
\end{equation*}
$$

Thus, there are two subcases: (1) $n=1$; (2) $n \geq 2$.
Subcase 2.2.1. Suppose that $n=1$. Then (3.12) can be rewritten as

$$
\begin{equation*}
\frac{H(z+\eta)}{H(z)} e^{h(z+\eta)-h(z)}-1=e^{P(z)} . \tag{3.13}
\end{equation*}
$$

By (3.13), we see that $\frac{H(z+\eta)}{H(z)}$ is a nonzero entire function. Set $\sigma(H)=\sigma_{4}$. Then $\sigma_{4}<\sigma(f)=k$. By Lemma 2.1, we see that for any given $\varepsilon_{4}\left(0<3 \varepsilon_{4}<k-\sigma_{4}\right)$, there exists a set $E_{4} \subset(1, \infty)$ of finite logarithmic measure such that for all z satisfying $|z|=r \notin[0,1] \cup E_{4}$, we have

$$
\begin{equation*}
\exp \left\{-r^{\sigma_{4}-1+\varepsilon_{4}}\right\} \leq\left|\frac{H(z+\eta)}{H(z)}\right| \leq \exp \left\{r^{\sigma_{4}-1+\varepsilon_{4}}\right\} \tag{3.14}
\end{equation*}
$$

Since $\frac{H(z+\eta)}{H(z)}$ is an entire function, by (3.13), we have

$$
T\left(r, \frac{H(z+\eta)}{H(z)}\right)=m\left(r, \frac{H(z+\eta)}{H(z)}\right) \leq r^{\sigma_{4}-1+\varepsilon_{4}}
$$

so that

$$
\begin{equation*}
\sigma\left(\frac{H(z+\eta)}{H(z)}\right) \leq \sigma_{4}-1+\varepsilon_{4}<k-1 . \tag{3.15}
\end{equation*}
$$

Since $s<k$, we can see that $\operatorname{deg} P \leq k-1$. If $\operatorname{deg} P<k-1$, then, by (3.15) and $\operatorname{deg}(h(z+\eta)-$ $h(z))=k-1$, we can see that the order of growth of the left-hand side of (3.13) is equal to $k-1$, and the order of growth of the right-hand side of (3.13) is equal to $\operatorname{deg} P$ which is less than $k-1$. This is a contradiction.

If $\operatorname{deg} P=k-1$, then since $\frac{H(z+\eta)}{H(z)}$ is an entire function and $\operatorname{deg}(h(z+\eta)-h(z))=k-1 \geq 1$, by (3.15), we can see that the entire function $\frac{H(z+\eta)}{H(z)} e^{h(z+\eta)-h(z)}$ has a Borel exceptional value 0 , thus the value 1 must be not its Borel exceptional value. Hence, the left-hand side of (3.13), $\frac{H(z+\eta)}{H(z)} e^{h(z+\eta)-h(z)}-1$, has infinitely many zeros, but the right-hand side of (3.13), $e^{P(z)}$, has no zero. This is a contradiction.
Subcase 2.2.2. Now we suppose that $n \geq 2$. Thus, for $s(=\operatorname{deg} P)$, there are two subcases: (1) $s<k-1$; (2) $s=k-1$.

Subcase 2.2.2.1. Now we suppose that $s<k-1$. Set $Q_{5}(z)=e^{h(z+\eta)-h(z)}$. Since $\sigma\left(Q_{5}\right)=$ $k-1 \geq 1, Q_{5}(z)$ is a transcendental entire function. Thus, (3.12) can be rewritten as

$$
\begin{equation*}
U_{5}\left(z, Q_{5}(z)\right) \cdot Q_{5}(z)=e^{P(z)}-(-1)^{n} \tag{3.16}
\end{equation*}
$$

where

$$
\begin{align*}
U_{5}\left(z, Q_{5}(z)\right)= & \frac{H(z+n \eta)}{H(z)} Q_{5}(z+(n-1) \eta) Q_{5}(z+(n-2) \eta) \cdots Q_{5}(z+\eta) \\
& -C_{n}^{1} \frac{H(z+(n-1) \eta)}{H(z)} Q_{5}(z+(n-2) \eta) Q_{5}(z+(n-3) \eta) \cdots Q_{5}(z+\eta) \\
& +\cdots+(-1)^{n-1} C_{n}^{n-1} \frac{H(z+\eta)}{H(z)} \tag{3.17}
\end{align*}
$$

Thus, using the same method as in the proof of Subcase 1.3 in the proof of Lemma 2.9 and noting that $\sigma\left(e^{P(z)}-(-1)^{n}\right)=\operatorname{deg} P<k-1$, we have

$$
m\left(r, e^{P(z)}-(-1)^{n}\right)=S\left(r, Q_{5}\right)
$$

Noting that $n \geq 2$ and so $\operatorname{deg} U_{5}\left(z, Q_{5}\right)=n-1 \geq 1$. Using the same method as in the proof of Subcase 1.3 in the proof of Lemma 2.9, we can obtain

$$
T\left(r, Q_{5}\right)=m\left(r, Q_{5}\right)=S\left(r, Q_{5}\right) .
$$

Clearly, this is a contradiction.
Subcase 2.2.2.2. Now we suppose that $s=k-1$. Thus, (3.12) is written as

$$
\begin{equation*}
\sum_{j=1}^{n}(-1)^{n-j} C_{n}^{j} \frac{H(z+j \eta)}{H(z)} e^{T_{j}(z)}+(-1)^{n}-e^{P(z)}=0 \tag{3.18}
\end{equation*}
$$

where $T_{j}(z)=h(z+j \eta)-h(z)(j=1,2, \ldots, n)$. Thus, by (3.3), we have

$$
\begin{equation*}
T_{j}(z)=j k \eta a_{k} z^{k-1}+P_{k-2, j}(z) \tag{3.19}
\end{equation*}
$$

where $P_{k-2, j}(z)$ is a polynomial with degree at most $k-2$. Thus, we have

$$
T_{j}(z)-T_{t}(z)=(j-t) k \eta a_{k} z^{k-1}+P_{j, t}(z) \quad(1 \leq j \neq t \leq n)
$$

where $P_{j, t}(z)$ is a polynomial with degree at most $k-2$.

First, we suppose that there is some $j_{0}\left(1 \leq j_{0} \leq n\right)$ such that $j_{0} k \eta a_{k}=b_{k-1}$, that is, $\operatorname{deg}\left(T_{j_{0}}(z)-P(z)\right) \leq k-2$. Thus, (3.18) can be written as

$$
\begin{equation*}
\sum_{1 \leq j \leq n, j \neq j_{0}}(-1)^{n-j} C_{n}^{j} \frac{H(z+j \eta)}{H(z)} e^{h(z+j \eta)-h(z)}+B_{j_{0}}(z) e^{h\left(z+j_{0} \eta\right)-h(z)}=(-1)^{n+1} \tag{3.20}
\end{equation*}
$$

where

$$
B_{j_{0}}(z)=(-1)^{n-j_{0}} C_{n}^{n-j_{0}} \frac{H\left(z+j_{0} \eta\right)}{H(z)}-e^{P(z)+h(z)-h\left(z+j_{0} \eta\right)}
$$

Set $Q_{6}(z)=e^{h(z+\eta)-h(z)}$ and $\sigma(H)=\sigma_{6}$. Then (3.20) can be rewritten as

$$
\begin{equation*}
U_{6}\left(z, Q_{6}(z)\right) \cdot Q_{6}(z)=(-1)^{n+1} \tag{3.21}
\end{equation*}
$$

where

$$
\begin{align*}
& U_{6}\left(z, Q_{6}(z)\right) \\
& =\sum_{1 \leq j \leq n, j \neq j_{0}}(-1)^{n-j} C_{n}^{n-j} \frac{H(z+j \eta)}{H(z)} Q_{6}(z+(j-1) \eta) Q_{6}(z+(j-2) \eta) \cdots Q_{6}(z+\eta) \\
& \quad+B_{j_{0}}(z) Q_{6}\left(z+\left(j_{0}-1\right) \eta\right) Q_{6}\left(z+\left(j_{0}-2\right) \eta\right) \cdots Q_{6}(z+\eta) \quad\left(j_{0} \geq 2\right), \tag{3.22}
\end{align*}
$$

or

$$
\begin{align*}
& U_{6}\left(z, Q_{6}(z)\right) \\
& \qquad=\sum_{2 \leq j \leq n}(-1)^{n-j} C_{n}^{n-j} \frac{H(z+j \eta)}{H(z)} Q_{6}(z+(j-1) \eta) Q_{6}(z+(j-2) \eta) \cdots Q_{6}(z+\eta) \\
& \quad+B_{j_{0}}(z) \quad\left(j_{0}=1\right) . \tag{3.23}
\end{align*}
$$

Noting that $(-1)^{n+1} \neq 0$, we can see that $U_{6}\left(z, Q_{6}(z)\right) \not \equiv 0$. Since $\sigma(H)<k$ and $\sigma\left(e^{P(z)+h(z)-h\left(z+j_{0} \eta\right)}\right) \leq k-2<k-1$, using the same method as in the proof of Subcase 1.3 in the proof of Lemma 2.9, we have

$$
\begin{equation*}
m\left(r, B_{j_{0}}(z)\right)=S\left(r, Q_{6}\right) \tag{3.24}
\end{equation*}
$$

Noting that $n \geq 2$ and so $\operatorname{deg} U_{6}\left(z, Q_{6}\right)=n-1 \geq 1$. Combining (3.21)-(3.24), using the same method as in the proof of Subcase 1.3 in the proof of Lemma 2.9, we can obtain

$$
T\left(r, Q_{6}\right)=m\left(r, Q_{6}\right)=S\left(r, Q_{6}\right)
$$

Clearly, this is a contradiction.
Secondly, we suppose that $j k \eta a_{k} \neq b_{k-1}$ for any $1 \leq j \leq n$. Thus, equation (3.18) can be rewritten as

$$
\begin{equation*}
e^{P(z)}=e^{b_{k-1} z^{k-1}} \cdot e^{P_{k-2}(z)}=\sum_{j=0}^{n}(-1)^{n-j} C_{n}^{j} \frac{H(z+j \eta)}{H(z)} e^{h(z+j \eta)-h(z)}, \tag{3.25}
\end{equation*}
$$

where $P_{k-2}(z)=P(z)-b_{k-1} z^{k-1}=b_{k-2} z^{k-2}+b_{k-3} z^{k-3}+\cdots+b_{0}$. For dealing with equation (3.25), we just compare $\left|b_{k-1}\right|$ with $n k\left|\eta a_{k}\right|$ since $n k\left|\eta a_{k}\right|>(n-1) k\left|\eta a_{k}\right|>\cdots>k\left|\eta a_{k}\right|$. Without loss of generality, we suppose that $n k\left|\eta a_{k}\right| \leq\left|b_{k-1}\right|$. Let $\arg b_{k-1}=\theta_{1}, \arg \left(\eta a_{k}\right)=\theta_{2}$ and $\sigma(H)=\sigma_{7}<k$. Take θ_{0} such that $\cos \left((k-1) \theta_{0}+\theta_{1}\right)=1$. By Lemma 2.1, we see that for any given $\varepsilon_{7}\left(0<3 \varepsilon_{7}<k-\sigma_{7}\right)$, there exists a set $E_{7} \subset(1, \infty)$ of finite logarithmic measure such that for all $z=r e^{i \theta_{0}}$ satisfying $|z|=r \notin[0,1] \cup E_{7}$, we have

$$
\begin{equation*}
\exp \left\{-r^{\sigma_{7}-1+\varepsilon_{7}}\right\} \leq\left|\frac{H(z+j \eta)}{H(z)}\right| \leq \exp \left\{r^{\sigma_{7}-1+\varepsilon_{7}}\right\} \quad(j=1, \ldots, n) \tag{3.26}
\end{equation*}
$$

Thus, noting that $e^{P_{k-2}(z)}$ is of regular growth, we can deduce from (3.25) and (3.26) that

$$
\begin{aligned}
\left|e^{b_{k-1} z^{k-1}}\right| & =\left|\frac{e^{P(z)}}{e^{P_{k-2}(z)}}\right| \\
& \leq \frac{\left|\sum_{j=0}^{n}(-1)^{j} C_{n}^{j} \frac{H(z+(n-j) \eta)}{H(z)} e^{h(z+(n-j) \eta)-h(z)}\right|}{\left|e^{b_{k-2} z^{k-2}+b_{k-3} z^{k-3}+\cdots+b_{0}}\right|} \\
& \leq \frac{(n+1) n!\exp \left\{r^{\sigma 7-1+\varepsilon 7}\right\} \exp \left\{n k\left|\eta a_{k}\right| \cos \left((k-1) \theta_{0}+\theta_{2}\right) r^{k-1}+O\left(r^{k-2}\right)\right\}}{\exp \left\{\frac{\left|b_{k-2}\right|}{2} r^{k-2}\right\}},
\end{aligned}
$$

that is,

$$
\begin{align*}
& \exp \left\{\left|b_{k-1}\right| r^{k-1}\right\} \\
& \quad \leq \exp \left\{n k\left|\eta a_{k}\right| \cos \left((k-1) \theta_{0}+\theta_{2}\right) r^{k-1}+r^{\sigma_{7}-1+\varepsilon_{7}}+O\left(r^{k-2}\right)-\frac{\left|b_{k-2}\right|}{2} r^{k-2}\right\} \\
& \quad \leq \exp \left\{n k\left|\eta a_{k}\right| \cos \left((k-1) \theta_{0}+\theta_{2}\right) r^{k-1}+o\left(r^{k-1}\right)\right\} . \tag{3.27}
\end{align*}
$$

We assert that

$$
n k\left|\eta a_{k}\right| \cos \left((k-1) \theta_{0}+\theta_{2}\right)<\left|b_{k-1}\right| .
$$

In fact, if $n k\left|\eta a_{k}\right|=\left|b_{k-1}\right|$, then, by $b_{k-1} \neq n k \eta a_{k}$, we know that $\cos \left((k-1) \theta_{0}+\theta_{2}\right) \neq 1$, that is, $\cos \left((k-1) \theta_{0}+\theta_{2}\right)<1$, and hence $n k\left|\eta a_{k}\right| \cos \left((k-1) \theta_{0}+\theta_{2}\right)<n k\left|\eta a_{k}\right|=\left|b_{k-1}\right|$. If $n k\left|\eta a_{k}\right|<$ $\left|b_{k-1}\right|$, then we have $n k\left|\eta a_{k}\right| \cos \left((k-1) \theta_{0}+\theta_{2}\right) \leq n k\left|\eta a_{k}\right|<\left|b_{k-1}\right|$.

Thus, taking a positive constant $\varepsilon_{8}\left(0<\varepsilon_{8}<\frac{\left|b_{k-1}\right|-n k\left|\eta \eta_{k}\right| \cos \left((k-1) \theta_{0}+\theta_{2}\right)}{3}\right)$, we can deduce from (3.27) that

$$
\begin{aligned}
\exp \left\{\left|b_{k-1}\right| r^{k-1}\right\} & \leq \exp \left\{n k\left|\eta a_{k}\right| \cos \left((k-1) \theta_{0}+\theta_{2}\right) r^{k-1}+o\left(r^{k-1}\right)\right\} \\
& \leq \exp \left\{\left(\left|b_{k-1}\right|-\varepsilon_{8}\right) r^{k-1}\right\},
\end{aligned}
$$

a contradiction. Thus, we have proved that P is only a constant and (3.2) holds.
Second step. Applying Lemma 2.9 to (3.2), we can obtain the conclusion.
Thus, Theorem 1.1 is proved.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally to the manuscript and read and approved the final manuscript.

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 11171119, 11226090) and supported by the Natural Science Foundation of Guangdong Province, China (No. S2013040014347).

Received: 17 April 2013 Accepted: 19 November 2013 Published: 17 Dec 2013

References

1. Hayman, WK: Meromorphic Functions. Clarendon, Oxford (1964)
2. Laine, I: Nevanlinna Theory and Complex Differential Equations. de Gruyter, Berlin (1993)
3. Yang, L: Value Distribution Theory. Science Press, Beijing (1993)
4. Bergweiler, W, Langley, JK: Zeros of differences of meromorphic functions. Math. Proc. Camb. Philos. Soc. 142, 133-147 (2007)
5. Whittaker, JM: Interpolatory Function Theory. Cambridge Tract, vol. 33. Cambridge University Press, Cambridge (1935)
6. Nevanlinna, R: Einige Eindentigkeitssätze in der Theorie der meromorphen Funktionen. Acta Math. 48, 367-391 (1926)
7. Gundersen, G: Meromorphic functions that share four values. Trans. Am. Math. Soc. 277, 545-567 (1983)
8. Gundersen, G: Correction to meromorphic functions that share four values. Trans. Am. Math. Soc. 304, 847-850 (1987)
9. Mues, E: Meromorphic functions sharing four values. Complex Var. Elliptic Equ. 12, 167-179 (1989)
10. Brück, R: On entire functions which share one value $C M$ with their first derivative. Results Math. 30, 133-147 (1996)
11. Yang, CC, Yi, HX: Uniqueness Theory of Meromorphic Functions. Kluwer Academic, Dordrecht (2003)
12. Gundersen, G, Yang, LZ: Entire functions that share one values with one or two of their derivatives. J. Math. Anal. Appl. 223(1), 88-95 (1998)
13. Chen, ZX , Shon, KH : On conjecture of R. Brück, concerning the entire function sharing one value CM with its derivative. Taiwan. J. Math. 8(2), 235-244 (2004)
14. Halburd, RG, Korhonen, R: Nevanlinna theory for the difference operator. Ann. Acad. Sci. Fenn., Math. 31, 463-478 (2006)
15. Heittokangas, J, Korhonen, R, Laine, I, Rieppo, J, Zhang, J: Value sharing results for shifts of meromorphic functions, and sufficient conditions for periodicity. J. Math. Anal. Appl. 355, 352-363 (2009)
16. Heittokangas, J, Korhonen, R, Laine, I, Rieppo, J: Uniqueness of meromorphic functions sharing values with their shifts. Complex Var. Elliptic Equ. 56, 81-92 (2011)
17. Liu, K: Meromorphic functions sharing a set with applications to difference equations. J. Math. Anal. Appl. 359, 384-393 (2009)
18. Chen, ZX: Growth and zeros of meromorphic solutions of some linear difference equation. J. Math. Anal. Appl. 373, 235-241 (2011)
19. Chen, ZX, Shon, KH: Value distribution of meromorphic solutions of certain difference Painlevé equations. J. Math. Anal. Appl. 364, 556-566 (2010)
20. Chen, ZX, Yi, HX: On sharing values of meromorphic functions and their difference. Results Math. 63(1), 557-565 (2013)
21. Chiang, YM, Feng, SJ: On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in the complex plane. Ramanujan J. 16, 105-129 (2008)
22. Halburd, RG, Korhonen, R: Difference analogue of the lemma on the logarithmic derivative with applications to difference equations. J. Math. Anal. Appl. 314, 477-487 (2006)
23. Heittokangas, J, Korhonen, R, Laine, I, Rieppo, J, Tohge, K: Complex difference equations of Malmquist type. Comput. Methods Funct. Theory 1, 27-39 (2001)
24. Laine, I, Yang, CC: Value distribution of difference polynomials. Proc. Jpn. Acad., Ser. A, Math. Sci. 83, 148-151 (2007)
25. Laine, I, Yang, CC: Clunie theorems for difference and q-difference polynomials. J. Lond. Math. Soc. 76(3), 556-566 (2007)
26. Gross, F: Factorization of Meromorphic Functions. G.P.O., Washington (1972)
27. Chen, ZX: On growth of meromorphic solution for linear difference equations. Abstr. Appl. Anal. 2013, Article ID 619296 (2013)

10.1186/1029-242X-2013-587

Cite this article as: Chen and Chen: A note on entire functions and their differences. Journal of Inequalities and Applications 2013, 2013:587

[^0]: ©2013 Chen and Chen; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

