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Abstract-A direct rational approximation method based on 
Thiele interpolating continued fractions theory is proposed for 
fast frequency sweep analysis of electromagnetic problems. And 
an adaptive algorithm is also formed. Compared with the 
conventional rational approximation method, the proposed 
method can get a rational approximation directly without a great 
number of matrix inverse computations and doesn't need to 
allocate much memory for high derivatives of the dense 
impedance matrix. Meanwhile, the computation of surface 
currents by continued fractions can be sped up as compared with 
the traditional rational approximation. Numerical simulations 
for broad band scattering analysis of different shaped objects are 
discussed to shown the effectiveness of the present method. 

Index Terms - Computational Electromagnetics, Thiele 
interpolating continued fractions, method of moments, fast 
frequency sweep analysis. 

I. INTRODUCTION 

The solution of electromagnetic scattering problems by 

different shaped objects is one of the most challenging 

problems in modem computational techniques [1][2], which 

have attracted a great amount of attention over the past few 

decades. As an efficient tool, method of moments (MOM) is 

not only a suitable but also an accurate and standard method 

which has been widely used for solution the EM integral 

equations. For many practical applications [3], there is need 

for solution of EM problems over a broad frequency band 

[4-6]. However, as a frequency-domain method, MOM need 

to compute the problems at different frequency points one by 

one, especially for highly frequency dependent problems, 

which is very time consuming. 

To overcome this problem, a lot of techniques have been 

developed. Take the model-based parameter estimation 

(MBPE) [7] and its special case asymptotic waveform 

evaluations (AWE) [8][9] for example, which are the most 

popular frequency sweep analysis tools for frequency domain 

methods. In the AWE technique, a Taylor series expansion is 

generated at a given frequency points to approximate the 

equivalent surface current, and the rational function approach 

is applied to improve the accuracy. As compared with using 

MOM at each of the frequency points, the A WE method is 

found to be superior in terms of the CPU time to obtain 

frequency response. However, the memory needed is greatly 

increased on account of the high derivatives of the dense 

impedance matrix. In MBPE method, data are extracted from 

more than one expansion point, and finally a rational function 

is also obtained. 

In this paper, a new approach based on Thiele interpolating 

continued fractions is proposed. As compared with the MBPE 

and A WE method, the presented technique has the following 

strong points: firstly, it doesn't need to allocate much memory 

for high derivatives of the dense impedance matrix and can get 

a rational approximation directly without a great number of 

matrix inverse computations. Secondly, the computation of 

surface currents by continued fractions can be sped up as 

compared with the traditional rational approximation. Finally, 

an adaptive method is also formed for scattering analysis of a 

given frequency band and numerical simulation for different 

shaped objects is considered. 

II. THEORY AND FORMULATIONS 

Consider an arbitrarily shaped three-dimensional (3D) 

conducting object illuminated by an incident field (E1IIC ,H1IIC). 
The electric field integral equation (EFIE) and magnetic field 
integral equation (MFIE) are given by 

nxL(J)=nxEIIIC(r) reS (1) 

.!.J(r)+nxK(J)= nxHIIIC(r) reS (2) 
2 

where J(r) denotes the unknown surface current density and 

the integral operators L and K are defined by 

L(J) = jko17o fl( J(r')g(r,r')+ :
; 

V'oJ(r')vg(r,r')f' (3) 

K(J) = flJ(r')xVg(r,r')dS" (4) 
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in which S denotes the surface of the object, ko is the free

space wavenumber, 170 is the free-space wave impedance, n 
is an outwardly directed normal, and g(r,r') is well-known 

free-space Green's function given by 
-ikolr-rl 

g(r,r') = e 
I '1 4JT r-r (5) 

Either EFIE or MFIE can be used to solve for J(r) . 
However, for a given closed S , L can be singular at certain 

frequencies when the exterior medium is lossless. 

Consequently, (1) may give an erroneous solution at these 
frequencies. A similar problem occurs in MFIE as well. To 
eliminate this problem, one can combine EFIE and MFIE to 
find 

an xn xL(J)+(I-a)'70 [�J(r) +n x K(J)] 
= an x n x Ei nc (r) + (1- a)!Jon x ni ne (r) reS (6) 

which is known as the combined field integral equation 

(CFIE). The combination parameter a is usually chosen 

between 0.2 and 0.8. 

By MOM solution with Rao-Wilton- Glisson (RWG) basis 
functions [10], the integral equation will result in a matrix 
equation of the form 

Z(k)I(k) = V(k) (7) 

To get the solution of above equation over broad frequency 

band, the Thiele interpolating continued fractions of I(k) is 

presented of the following form 

I(k):::;Rn(k)=ao+ k-kol+ k-A, I+ ... + k-kn_11 (8) 
la1 la2 Ian 

in which ai =ip[ko,A,,···,ki] for i=O,I,···,n. ip[ko,A,,.··,ki] 
are the inverse differences of I(k) at kO,kl'···kn, which can 

be computed recursively as below: 

k -k m [k k k] = I , 
't' i' " I [k k] - [k k] ip I' l ip" I 

(9) 

(10) 

(11) 

It is easy to verify R" (k) is a rational function of 

type ([(n+I)/2]/[n/2]) , which satisfy Rn(kJ = I(kJ, where 

[ x] denotes the greatest integer not exceeding x. 

From the description above, one can conclude that the 
proposed method can form a direct rational approximation and 
doesn't need to compute and store the high order derivatives 
of the dense impedance matrix. Meanwhile, since the 
characteristic of the continued fractions, the computation of 
surface currents by proposed method can be sped up greatly as 
compared with the traditional rational approximation. 

To get a practical frequency sweep analysis method for 

electromagnetic engineering, we want to form an adaptive 
frequency sweep analysis algorithm based on the relative 
residual 

IIZ(k)Rn(k)- V(k)11 err(k) = 
IIV(k)11 

(13) 

Assume a frequency sweep method is desired to solve (7) at 

frequency points fu = ku V j2JT for u = 1, 2, . ··, N . 

Based on a given order, one will get a rational 
approximation function by (8). Substituting this function into 

(11) if err(ku) is small than some tolerance value � for 

u = 1, 2, · .. , N , the frequency sweep is completed. Otherwise 

the inverse differences of I(k) will be computed at kn+l to 

increase the order, while kn+l is chosen to make the (13) get 

the largest value. 

� 

III. NUMERICAL RESULTS 
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Fig. I the RCS frequency response of a PEC sphere with radius ofO.318cm 

To validate the effectiveness of the proposed method, we 
firstly consider a PEC sphere with its radius of 0.3I8cm, 
which is illuminated by a plane wave propagating in the z 
direction and E-polarized in the x direction. As shown in 
figure 1, the frequency band is chosen to be 5GHz-35GHz, 
the total number of RWG functions is 1470. The order of the 
Thiele interpolating continued fractions is chosen to be 8, and 
the interpolating frequency points are chosen based on 
equidistance node .The simulation result is compared with that 
of the analytical solution method by Mie series and direct 
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solution of EFIE by method of moments. With the step of 0.5 
GHz, it takes the direct method 1739 seconds to obtain the 
solution over the frequency band, while the Thiele 
interpolating continued fractions method consumed 214 
seconds. 
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Fig.2 the RCS frequency response of a PEC cube 

As a second example, the scattering analysis of a PEC cube 
with side-length of 0.5cm is considered over the frequency 
band 4GHz-44GHz.The surface of the object is discretized 
into 768 triangular elements resulting into 1152 unknowns. 
With the step of 0.5 GHz, it takes the direct method 2048 
seconds to obtain the solution of EFIE over the frequency 
band, while the Thiele interpolating continued fractions 
method with its order set to be 10 consumed 275 seconds. 

10 r---�----�----�----�----� 

o 

� -10 en 
co 
-0 
;;; -20 
o 
a::: 

-40 

10 

Direct Solution 

-- Adaptive Thiele interpolating 

20 30 40 
Frequency (GHz) 

50 

Fig.3 the RCS frequency response of a PEC sphere with radius ofO.5cm 

computed by adaptive Thiele interpolating 

Finally, to show the efficiency of the proposed adaptive fast 
frequency sweep method, the scattering analysis of a PEC 

sphere with its diameter of lcm over the frequency band 
2GHz-52GHz. The primary order is chosen to be 8 to solve 
CFIE, and the final order is 15 and the final interpolating 
frequency points are {2GHz 4.8GHz 8.25 GHz 10.04 GHz 
14.5 GHz 16.6 GHz 20.75 GHz 23 GHz 24.3GHz 27 
GHz 33.25 GHz 37.1 GHz 39.5 GHz 45.75 GHz 47.8 

GHz 52 GHz }. The total CPU time for direct solution 
method with a step of 0.5GHz is 1442 seconds, while the 

adaptive Thiele interpolating method consumed only 221 
seconds. 

IV. CONCLUSION 

A new method based on Thiele interpolating continued 
fractions to accomplish fast frequency sweep analysis is 
proposed, without computing and storing the high order 
derivatives, which can get rational approximation of the 
surface currents directly. Meanwhile, an adaptive frequency 
sweep algorithm is formed based on the relative residual 
method. 
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