244 research outputs found

    Psychosocialization in Nepal: Notes on translation from the frontlines of global mental health

    Get PDF
    As ‘psychosocial interventions’ continue to gain traction in the field of global mental health, a growing critical literature problematises their vague definition and attendant susceptibility to appropriation. In this article, I recast this ill-defined quality as interpretive flexibility and explore its role in processes of translation occurring at the frontlines of care in rural Nepal. Drawing from 14 months of ethnographic fieldwork among community-based psychosocial counsellors, I consider how the broad and flexible notion of the ‘psychosocial problem’ operates as a ‘boundary object’ in transnational mental health initiatives—that is, how it facilitates the collaboration of service users, clinicians, donors, and policymakers in shared therapeutic projects without necessarily producing agreement among these parties regarding the nature of the suffering they address. I suggest that psychosocial interventions may be gaining popularity not despite but precisely because of the lack of a unitary vision of the problems psychosocial care sets out to alleviate. In closing, I reflect on what distinguishes ‘psychosocialisation’ from medicalisation and highlight the limitations of the latter as a critical paradigm for the anthropology of global mental health

    Environmental drivers of variation in bleaching severity of Acropora species during an extreme thermal anomaly

    Get PDF
    High sea surface temperatures caused global coral bleaching during 2015–2016. During this thermal stress event, we quantified within- and among-species variability in bleaching severity for critical habitat-forming Acropora corals. The objective of this study was to understand the drivers of spatial and species-specific variation in the bleaching susceptibility of these corals, and to evaluate whether bleaching susceptibility under extreme thermal stress was consistent with that observed during less severe bleaching events. We surveyed and mapped Acropora corals at 10 sites (N = 596) around the Lizard Island group on the northern Great Barrier Reef. For each colony, bleaching severity was quantified using a new image analysis technique, and we assessed whether small-scale environmental variables (depth, microhabitat, competition intensity) and species traits (colony morphology, colony size, known symbiont clade association) explained variation in bleaching. Results showed that during severe thermal stress, bleaching of branching corals was linked to microhabitat features, and was more severe at reef edge compared with lagoonal sites. Bleaching severity worsened over a very short time-frame (∼1 week), but did not differ systematically with water depth, competition intensity, or colony size. At our study location, within- and among-species variation in bleaching severity was relatively low compared to the level of variation reported in the literature. More broadly, our results indicate that variability in bleaching susceptibility during extreme thermal stress is not consistent with that observed during previous bleaching events that have ranged in severity among globally dispersed sites, with fewer species escaping bleaching during severe thermal stress. In addition, shaded microhabitats can provide a refuge from bleaching which provides further evidence of the importance of topographic complexity for maintaining the biodiversity and ecosystem functioning of coral reefs

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signal-to-noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO's first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far. © 2017 American Physical Society

    Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network

    Get PDF
    Gravitational-wave astronomy has been firmly established with the detection of gravitational waves from the merger of ten stellar-mass binary black holes and a neutron star binary. This paper reports on the all-sky search for gravitational waves from intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. The search uses three independent algorithms: two based on matched filtering of the data with waveform templates of gravitational-wave signals from compact binaries, and a third, model-independent algorithm that employs no signal model for the incoming signal. No intermediate mass black hole binary event is detected in this search. Consequently, we place upper limits on the merger rate density for a family of intermediate mass black hole binaries. In particular, we choose sources with total masses M=m1+m2ϵ[120,800] M and mass ratios q=m2/m1ϵ[0.1,1.0]. For the first time, this calculation is done using numerical relativity waveforms (which include higher modes) as models of the real emitted signal. We place a most stringent upper limit of 0.20 Gpc-3 yr-1 (in comoving units at the 90% confidence level) for equal-mass binaries with individual masses m1,2=100 M and dimensionless spins χ1,2=0.8 aligned with the orbital angular momentum of the binary. This improves by a factor of ∼5 that reported after Advanced LIGO's first observing run. © 2019 American Physical Society

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society
    corecore