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High sea surface temperatures caused global coral bleaching during 2015–2016. During

this thermal stress event, we quantified within- and among-species variability in bleaching

severity for critical habitat-forming Acropora corals. The objective of this study was

to understand the drivers of spatial and species-specific variation in the bleaching

susceptibility of these corals, and to evaluate whether bleaching susceptibility under

extreme thermal stress was consistent with that observed during less severe bleaching

events. We surveyed and mapped Acropora corals at 10 sites (N = 596) around the

Lizard Island group on the northern Great Barrier Reef. For each colony, bleaching

severity was quantified using a new image analysis technique, and we assessed

whether small-scale environmental variables (depth, microhabitat, competition intensity)

and species traits (colony morphology, colony size, known symbiont clade association)

explained variation in bleaching. Results showed that during severe thermal stress,

bleaching of branching corals was linked to microhabitat features, and was more severe

at reef edge compared with lagoonal sites. Bleaching severity worsened over a very short

time-frame (∼1 week), but did not differ systematically with water depth, competition

intensity, or colony size. At our study location, within- and among-species variation in

bleaching severity was relatively low compared to the level of variation reported in the

literature. More broadly, our results indicate that variability in bleaching susceptibility

during extreme thermal stress is not consistent with that observed during previous

bleaching events that have ranged in severity among globally dispersed sites, with

fewer species escaping bleaching during severe thermal stress. In addition, shaded

microhabitats can provide a refuge from bleaching which provides further evidence of

the importance of topographic complexity for maintaining the biodiversity and ecosystem

functioning of coral reefs.
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INTRODUCTION

Mass coral bleaching in response to increased sea surface
temperature is a major threat to the persistence of coral reefs.
Analyses of sea surface temperature data indicate that ocean
warming has accelerated in recent decades, and that coral
reefs are increasingly being exposed to thermal stress (Heron
et al., 2016). Since the 1980s, global mass bleaching events
have caused large-scale and significant coral loss. For example,
in 1998, increased seawater temperatures caused widespread
bleaching and coral mortality in most of the world’s coral reef
regions, with mortality in excess of 90% on some reefs in the
central and western Indian Ocean (Spalding and Brown, 2015).
Moreover, between June 2014 and April 2016, bleaching was
observed throughout the global oceans during what is now
considered to be the longest bleaching event on record (Eakin
et al., 2016). In the context of bleaching, temperature stress is
often measured in “degree heating weeks” (DHW, ◦C-weeks),
a metric which summarizes the duration of time over which
temperatures have been above the average temperature of the
warmest summer month at each location (e.g., Eakin et al.,
2010). The recent thermal stress event caused severe bleaching
on the northern section of the Great Barrier Reef in 2016, where
approximately one third of reefs experienced levels of heat stress
that were up to two-fold higher than those experienced in the
1998 bleaching event in the same region (Hughes et al., 2017).
We here investigate whether species susceptibility to bleaching
under extreme heat stress is consistent with species susceptibility
reported during previous bleaching events.

Different coral species respond differently to environmental
stressors, leading to substantial among-species variability in
bleaching susceptibility. In general, the literature documents
relatively high bleaching severity for branching corals from
the genera Stylophora, Acropora, and Pocillopora, and lower
bleaching severity for mound-shaped Porites and Diploastrea
(e.g., Marshall and Baird, 2000; Loya et al., 2001; van Woesik
et al., 2011; Swain et al., 2016). However, bleaching severity
is spatially patchy (e.g., Wooldridge and Done, 2004; Penin
et al., 2007). For instance, bleaching severity varies between
habitats with some studies reporting bleaching to be less severe
in shallow compared with deep lagoons (Grimsdich et al., 2010),
while others report the opposite trend (Fisk and Done, 1985;
Muhando, 1999). Bleaching severity can also vary with depth
(e.g., Penin et al., 2007), although some studies have reported no
significant variation in bleaching with depth when values were
pooled across genera (Bruno et al., 2001). While temperature
stress is recognized to be the primary driver of mass-bleaching
(Berkelmans et al., 2004; Hughes et al., 2017), there is no strong
consensus about additional environmental drivers of spatial
variation in bleaching severity. It is likely that a combination of
environmental factors (e.g., local light intensity and water flow)
and biological factors (including species-specific responses, and
local abundances of susceptible vs. tolerant species) influence
spatial patterns of bleaching severity.

In addition to among-species variation in bleaching
susceptibility, there is often high variation in the bleaching
responses of individuals of the same species. For instance,

during the 1998 bleaching event, massive Porites were more
susceptible to bleaching in the Palm Islands on the central
GBR than they were at nearby Magnetic Island (Marshall
and Baird, 2000). Similarly, during a bleaching event in the
central Pacific, bleaching was observed at some sites but not
others for each of several monitored species (Fagerstrom and
Rougerie, 1994). Indeed, numerous studies report within-species
variation in bleaching severity across different habitats (e.g.,
Bruno et al., 2001; Aronson et al., 2002; Hardman et al., 2004).
There are numerous potential biotic drivers of this within-species
variability. First, different types of Symbiodium are more resistant
to increased ocean temperature than others (e.g., Thornhill et al.,
2006; Jones et al., 2008; Lesser et al., 2010; Howells et al., 2013),
and many coral species can associate with more than one type of
Symbiodinium (Baker, 2003; Sampayo et al., 2008). Therefore, we
assessed whether species that have the capacity to associate with
more than one symbiont type show lower bleaching severity,
on average, than other species. Second, bleaching severity is
influenced by coral colony size. For example, larger colonies
experienced more extensive bleaching than smaller colonies of
several species during a major Caribbean bleaching event in
2005 (Brandt, 2009). However, other studies have found contrary
results with higher bleaching for smaller colonies for some
species (Pratchett et al., 2013), or that colony size only influences
bleaching prevalence for certain colony morphologies in certain
locations (Wagner et al., 2010). Finally, other benthic organisms
that compete for space with corals, such as soft corals and
macroalgae, contain secondary metabolites that can lead to the
expulsion of Symbiodinium (i.e., bleaching, Aceret et al., 1995).
Moreover, competition can influence coral fitness more generally
(e.g., by growth suppression, see Horwitz et al., 2017), and such
effects might act as an additional stressor that increases bleaching
severity. To the best of our knowledge, effects of competition on
bleaching severity have not previously been investigated in situ.

The topographic complexity of reefs results in high variability
in environmental conditions over small spatial scales. For
instance, stable and biologically significant temperature variation
occurs at small scales (1–2m, e.g., Gorospe and Karl, 2011),
and also at larger between-habitat scales (hundreds of meters,
e.g., Lundgren and Hillis-Starr, 2008). Water flow also varies
within- and among-habitats (e.g., Fulton and Bellwood, 2005;
Hoogenboom and Connolly, 2009). Therefore, spatial variation
in abiotic drivers, such as light intensity, water flow, temperature,
and turbidity, influences which corals bleach and where (e.g.,
West and Salm, 2003). Previous studies report different effects
of water flow on bleaching severity, with evidence of increased
bleaching severity at exposed sites with high wave activity
(McClanahan et al., 2007), as well as evidence of reduced
bleaching, along with higher survival of bleached corals, under
high water flow conditions (Nakamura and van Woesik, 2001;
Nakamura and Yamasaki, 2005). Variability in bleaching among
different reef habitats is also associated with site-specific turbidity
levels (e.g., Williams et al., 2010). However, observed responses
range from a negative effect of turbidity whereby suspended
particulates are thought to act as an additional stressor that
lowers temperature tolerance (Williams et al., 2010; Hongo and
Yamano, 2013), to predictions that turbidity may lessen the
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severity of bleaching in some shallow habitats by reducing light
penetration (West and Salm, 2003; Cacciapaglia and vanWoesik,
2016).

Methodological issues associated with quantifying bleaching
severity in the field might also lead to variation between studies.
While observer differences are unlikely to explain variation in
bleaching severity between habitats reported in a single study,
observers can differ in color sensitivity or in training (e.g., Siebeck
et al., 2006).Many observermethodsmeasure bleaching in simple
categories (e.g., “pale,” “partially bleached,” and “bleached”), and
this categorization can obscure color gradation. To overcome
issues associated with categorization of bleaching, some studies
estimate the proportion of each coral colony that is healthy
vs. bleached (e.g., Obura, 2001), providing a finer resolution of
bleaching severity. Despite these advances, however, a recent
review highlighted the relatively high measurement uncertainty
for bleaching severity, and noted that standardizing measuring
protocols would help to increase the precision of bleaching
estimates (Swain et al., 2016). To help standardize bleaching
measurements, we developed a new quantification of bleaching
severity by measuring coral “whiteness” in individually white-
balanced images of healthy, pale and bleached corals.

The objective of this study was to understand the drivers of
small-scale variation in the bleaching susceptibility of branching
corals, and to evaluate whether bleaching susceptibility under
extreme thermal stress is consistent with that observed during
previous (less severe) bleaching events. We focused on corals
from the genus Acropora due to their high abundance on Indo-
Pacific reefs, their importance for the structural complexity of
reefs, and their variable bleaching severity within- and among-
species (e.g., Marshall and Baird, 2000; Loya et al., 2001; Swain
et al., 2016). Specifically, we aimed to understand whether
and how variation in bleaching severity was associated with
depth, spatial location of colonies relative to the reef edge (a
measure of exposure to wave energy and general reef habitat),
microhabitat, colony size, colony morphology, and the level of
competition and the identity of competitors. We also evaluated
whether association with multiple symbiont types could explain
among-species variation in bleaching severity using data from
the Geosymbio database (Franklin et al., 2012). Finally, we
compiled literature data on the response of Acropora species
during previous thermal stress events, and assessed whether
those species that have been consistently reported to be severely
bleached in previous studies were also the most severely bleached
during the extreme thermal anomaly which occurred on the
Great Barrier Reef during the austral summer of 2016.

MATERIALS AND METHODS

Field Data Collection
Surveys of coral bleaching were conducted at predominantly
shallow, lagoonal sites, and at one additional mid-shelf location,
within and around the Lizard Island group (northern Great
Barrier Reef, 14◦40.140S, 145◦27.649E) during early March 2016
∼2 weeks after bleaching was first reported at the location.
Thermal stress at this location reached ∼10 DHW during this
bleaching event (Hughes et al., 2017) and in situ temperature

loggers (Onset Hobo) measured an average temperature of
30.3◦C (range 27.7–33.2◦C) at two reef crest sites during
February and March 2016. At the time of the surveys, significant
bleaching of susceptible coral species had been observed,
but mortality was still negligible (widespread bleaching-related
mortality was observed on reefs in the region 1 month later,
Hoogenboom unpubl. data). Over a period of 8 days, divers
conducted in-water surveys at 10 sites where the bleaching status
of ∼60 Acropora colonies was monitored per site. Colonies were
selected haphazardly as divers swam along a depth contour from
a randomly selected starting place, making a conscious effort
to observe colonies from different reef microhabitats as far as
practicable given the topography of each site. The spatial position
of each colony was taken using a towed GPS (Garmin eTRex)
that was time-synchronized with a dive watch, and the depth
of each colony was recorded using a dive computer (Suunto,
D4 and Zoop). Each colony was photographed from directly
above (as described below), and additional photographs of colony
morphology, local reef topography and colony microhabitat,
neighboring competitors, and corallite shape were taken to enable
measurement of colony size and competition intensity, and to
assist species-level identification. We also kept track of the time
and date of observations because ongoing heat stress suggested
that bleaching severity would continue to increase during
and after the observation period. The full dataset, including
coral images and spatial positions, is available in Critchell and
Hoogenboom (2017).

Measurement of Bleaching Severity
(Response Variable)
Individual coral colonies were photographed from directly
overhead, without flash, and from as close as practicable, with
a Canon G16 digital camera in an underwater housing. Each
photograph contained a color reference chart and scale bar.
As differing light conditions of each colony did not allow
for identical camera settings to be used in each photograph,
individual settings based on the highest image quality (pixel
count) and lowest sensitivity (ISO) settings were used. Post-
processing was conducted using Adobe Photoshop Creative
Cloud (2015) software with images transformed into the device-
independent CIEL∗a∗b∗ color space which measures color based
on lightness (L), along a green-red gradient (a), and along a blue-
yellow gradient (b). All images were individually white balanced
by identifying true black, true white, and 50% gray thresholds in
each photograph. Subsequently, four regions of the colony were
selected haphazardly from across the surface area of each coral
colony, using the color sample tool. Each sampled region was a
constant distance from the branch tip (1–2 cm), and avoided the
outer margins of the colonies where branches are often oriented
in slightly different directions, and can be shaded by upper
branches. The color sample tool in the software was set to capture
an 11 × 11 pixel sample for each region of the coral surface, and
calculated the average color across each 121 pixels region. The
four L∗a∗b∗ color samples were averaged for each colony, in order
to gain a single numerical measurement of color, the divergence
of each L∗a∗b∗ average value from black was calculated as 1E
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(after Riggs, 1997). Thismethod generated a value for each colony
within a range of 0–100, with increasing values representing
increasingly bleached (nearest to white) colonies. To determine
a reference point for the color of healthy (unbleached) corals,
the same technique was used to calculate “whiteness” values for
Acropora colonies (n = 12) that showed normal colouration,
and that were surveyed and photographed during March 2016 at
sites around Orpheus Island. These additional colonies included
the same species and colony morphologies as observed at Lizard
Island.

Drivers of Bleaching Severity (Explanatory
Variables)
Image Analysis
Images of each coral colony (N = 596) were analyzed to
determine coral colony morphology after Wallace (1999) as
either digitate, corymbose, arborescent, tabular, arborescent
table, or hispidose/caespitose. Each coral colony was identified
to species level based onWallace et al. (2012) andWallace (1999)
except for 7 colonies for which species identification could not
be reliably determined from the photographs (referred to in
our dataset as Acropora spp.). We note that many coral species
display morphological plasticity and certain pairs of species have
overlapping variation in morphology which poses a challenge
for species identification. In our study, some colonies within the
following species pairs were difficult to distinguish from each
other from photos alone and, therefore, species-level differences
between these pairs should be interpreted with caution: A. loripes
and A. longicyathus, A. nasuta and A. valida, A. humilis and A.
gemmifera.

Colony planar surface area was measured for each colony
using image analysis in Image J (version 1.51 h, US National
Institute for Health). For each colony we measured the longest
diameter and the diameter perpendicular to that and calculated
planar area based on the geometric formula for the area of an
ellipse. The microhabitat of each colony was also assessed from
images of the localized reef topography, and was categorized as;
“elevated” (where the topography of the reef meant the coral
was >∼40 cm above the surrounding corals) “open” (where the
colony was on flat reef substratum without any obvious shading
by competitors), “crevice” (where the colony grew within a crack
in the reef matrix), “overhang” (where the colony was shaded by
the reef matrix or other colonies), or “sand” (where the colony
grew above a sand patch). Competition intensity was measured
by dividing each coral into 8 equal segments centered over the
mid-point of the colony, and counting the number of these
“octants” in which a benthic competitor was within ∼5 cm of
the focal colony, after Hoogenboom et al. (2011). These data
were subsequently categorized as either: “no competitors,” “low”
(competitors present in 1–2 of octants), “medium” (competitors
present in 3–4 octants), and “high” (competitors present in >4
octants). In addition, we noted whether competitors included
soft corals (categorical variable with soft corals present or
absent) and macroalgae (categorical variable with macroalgae
present or absent). Only 8 of 596 colonies were in competition
with macroalgae so this variable was excluded from subsequent
analysis.

Spatial Data
For each colony, depth data measured in the field were converted
to depth below lowest astronomical tide based on the known
tidal height at the time of sampling. The spatial position data
for each colony was used to calculate the position of each colony
relative to the open ocean. To do this, the position of the reef
edge was defined from reef polygons extracted fromGoogle Earth
images (Lizard Island, −14.666777S 145.462971E, image date
10/10/2011 accessed 06/02/2017 with eye altitude of 6.9 km; No
Name Reef, −14.641968S 145.653061E, image date 15/09/2016
accessed 07/02/2017 with eye altitude of 4.36 km), and were
imported into ArcGIS (ESRI, version 10.2). The spatial position
of each coral colony and the reef polygons were transformed to
GDA 1994 MGA Zone 55 projection to enable measurement of
distances in meters with conversion from decimal degrees. The
“near” function was used in ArcGIS to calculate the distance (m)
of each point (i.e., each coral colony) from the nearest reef edge.

Coral-Symbiodinium Associations
Given the influence of different Symbiodinium on the thermal
tolerance of Acropora corals (e.g., Howells et al., 2013), we
determined the total number of Symbiodinium clades reported
in the GeoSymbio database for the surveyed Acropora species
(Franklin et al., 2012). Only records that identified Symbiodinium
using denaturing gradient gel electrophoresis profiles of the
internal transcribed spacer 2 region of rDNA were included to
avoid confounding effects due to the use of different methods of
identifying Symbiodinium. Furthermore, only Acropora species
for which there were more than three records in the database
were included in this analysis.

Reported Bleaching Severity of Acropora during

Previous Bleaching Events
To compare the results from our in-water surveys with
observations of Acropora bleaching in previous events, we
conducted a comprehensive literature search using Web of
Science to conduct cited reference searches for Marshall and
Baird (2000) and Loya et al. (2001), and an additional keywords
search for “Acropora” and “bleaching.” To capture the gray
literature we also scanned all papers listed in the online bleaching
database ReefBase (1631 records, as of March 2016, ReefBase,
2017) and extracted data from publications that were publically
available. Among this set of publications, data were only used if
the study reported field observations during a thermal bleaching
event (not laboratory experiments), if corals were identified to
species level, and if bleaching was quantified in a way that
captured gradation in bleaching severity. We excluded papers
where bleaching effects were measured as a change in coral
cover between different observation periods due to difficultly
ascribing changes in abundances solely to bleaching. In total,
57 publications matched our criteria, yielding 527 records of
bleaching for 86 Acropora species. We retained species names
as reported in the original publications despite some subsequent
synonymization of names (e.g., A. wallaceae was synonymized
with A. samoensis by Wallace, 1999), and we recorded colony
morphologies of species based on Wallace (1999) and Veron
(2000).
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To standardize bleaching metrics between studies, data
extracted from each publication were re-categorized as follows:
“none” means no bleaching of that species was reported in that
study; “low” means that the study recorded the species to be
partially bleached or with <25% of colonies affected; “moderate”
means that 26–50% of colonies were bleached or there was
partial bleaching with low levels of recorded mortality; “high”
means 50–80% of colonies were bleached and/or mortality was
observed; “severe” means that more than 80% of colonies of
that species were bleached and/or high levels of bleaching-related
mortality were recorded. Data are presented as the percentages of
records for each species that fell within each of these categories.
In both the data from Lizard Island, and the literature data,
the measurement of bleaching severity reflects the short- and
long-term thermal history of each colony because measurements
were made under natural field conditions. The database we have
compiled is accessible in the Supplementary Material.

Data Analysis
To identify the strongest predictors of bleaching severity during
the extreme thermal anomaly, we used a linear mixed-effects
model that included all main effects (day of observation,
colony morphology, depth, microhabitat, competition intensity,
presence of soft corals, colony size, and distance to open
ocean, where the latter captures variation in environmental
conditions between reef-edge and lagoon habitats), and a set
of specific interaction terms that were established a-priori
based on evidence in the literature. Water flow potentially
modulates bleaching severity through effects on gas exchange
which are, in turn, affected by both colony morphology and
colony size (Hoogenboom and Connolly, 2009). Consequently,
we included interaction terms between distance from ocean (a
proxy for wave exposure and general reef habitat) and colony
morphology, and between distance from ocean and colony size.
Colony morphology determines how much light impinges on
the coral tissue surface, and light intensity also changes with
depth (Hoogenboom et al., 2008). Therefore, we considered
that different morphologies might bleach differently at different
depths and included a depth by morphology interaction.
Different coral morphologies use different competition strategies
and the outcome of competition can depend on colony size
(Jackson, 1979). Therefore, we included competition by colony
size and competition by morphology interaction terms. Finally,
we considered that different coral morphologies might bleach
at different rates and included the interaction between day
of observation and morphology. We had no a priori reason
to expect that effects on bleaching severity from the day of
observation (duration of exposure to thermal stress), or that
effects of the presence of soft corals, should depend on any other
environmental factor and therefore omitted those interactions.
The dataset includes two random effects; “site” (because corals
were observed at a random selection of sites at the location)
and “species” (because we observed a random subset of the
pool of species based on which species were present at each site
rather than observing species selected a priori). We used model
selection based on a likelihood ratio test to assess whether the
mixed-effects model should include random effects for both “site”

and “species within site.” All statistical analyses were performed
using the R statistical software (R Development Core Team,
2017).

Our assessment of the Acropora community naturally present
at each site meant that we were likely to have different numbers
of observations of bleaching severity for different species,
and a different composition of species at different sites. To
determine whether differences in species composition between
sites contributed to among-site variation in bleaching severity we
categorized sites as either “exposed” (<420m from reef edge, 4
sites) or “lagoon” (>510m from reef edge, 6 sites), and calculated
community similarity between pairs of sites using the Bray–
Curtis index of dissimilarity. The categorization of “exposed”
vs. “lagoon” was based on a natural distance division in our
data which yielded approximately equal numbers of sites in each
category. This community similarity approach was chosen in
place of a multivariate species-by-site ordination because the
latter technique is not recommended when there are many more
variables (species) than samples (sites). A similar approach was
used to assess whether the relative frequency of microhabitats
differed between exposed and lagoon sites using a χ

2 goodness
of fit test.

Data describing Symbiodinium association of Acropora were
only available for a subset of the species we observed. These
sparse data did not permit quantitative analysis and, therefore,
we used graphical analysis to assess whether the capacity to host
different symbiont types was related to bleaching severity. Finally,
hierarchical cluster analysis was used to group coral species based
on their bleaching severity during previous bleaching events as
reported in the literature. Subsequently, we applied the same
species groupings to the species observed at Lizard Island, and
assessed whether mean bleaching severity observed at our study
site differed systematically among these predetermined species
groups.

RESULTS

Bleaching severity values measured using our new method
ranged from 42 (least “white”) to 99 (very close to pure white)
across the 10 Lizard Island study sites. In contrast, “whiteness”
values for unbleached corals at Orpheus Island (photographed at
the same time of year, and including the same coral species and
morphologies as at Lizard Island) averaged 43 (±s.e. 3.2, range
21–61). Overall, 97% of coral colonies observed at Lizard Island
(N = 596) showed whiteness values outside of the range observed
for unbleached corals at Orpheus Island, and 71% of colonies had
whiteness values >80 (Figure 1).

Among the set of hypothesized correlates of bleaching
severity, only day of observation, microhabitat, distance of
colonies from the open ocean, and colony morphology explained
a significant amount of the variation in bleaching severity. We
observed a clear signal of increased bleaching severity over
time, despite the relatively short observation period (8 days,
Table 1). This temporal variation was equivalent in magnitude
to the variation in bleaching severity among microhabitats
(average bleaching values were ∼79 on day 1 and ∼88 on
day 8, Figures 2A,C). In addition, hispidose, digitate, and
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FIGURE 1 | Frequency distribution of bleaching severity measurements for Acropora corals (N = 596) at Lizard Island in March 2016, as measured from

white-balanced images of corals in situ. Photos show representatives of coral colonies with different bleaching severity, and numbers in the upper right hand corner of

each image show the bleaching severity for each coral.

TABLE 1 | Results of general linear mixed effects model of bleaching severity, with

site and species included as random effects in the model.

Factor Df F p

Day of observation 1, 8 13.3 <0.01

Colony morphology 5, 381 3.5 <0.01

Microhabitat 4, 381 20.6 <0.001

Distance from open ocean 1, 381 5.5 <0.02

All other main effects and interaction terms were not significant (p > 0.08) and were
excluded from the final model based on a backwards-deletion approach.

arborescent morphologies were the most severely bleached,
whereas tabular morphologies were the least severely bleached
(Table 1, Figure 2B). Finally, bleaching severity decreased with
distance away from the open ocean, with corals at sites in the
lagoon generally showing lower bleaching severity than those at
sites close to the reef edge (Table 1, Figure 2D).

Corals growing in crevice and overhang environments showed
significantly less severe bleaching than corals in open, elevated,
and sand microhabitats (Figure 2, Table 1), supporting the
general consensus that bleaching is more severe under conditions
of high irradiance. In contrast, depth (range −0.5 to 5m below
LAT) was not significantly associated with bleaching [GLMM,
“depth” effect, F(1, 570) = 0.08, p = 0.78]. The relative frequency
of different microhabitats occupied by the coral colonies we
observed differed between sites that were close to the reef edge
and sites that were close to the center of the lagoon (Figure 3).
Overall, Acropora colonies were more frequently found in open

microhabitats at reef edge sites compared with a higher frequency
of elevated and crevice microhabitats at lagoonal sites (Goodness
of fit test, χ

2 = 19.3, df = 4, p < 0.001). Despite these
differences in microhabitat availability, Bray–Curtis similarity of
species composition between pairs of sites was approximately
equal when reef edge sites were compared with each other (mean
dissimilarity 0.54 between 6 pairs of sites), to when lagoonal sites
were compared with each other (mean dissimilarity 0.53 between
15 pairs of sites), and to when lagoonal sites were compared with
reef edge sites (mean dissimilarity 0.51 between 24 pairs of sites).

Corymbose coral species, including A. secale, A. selago, and
A. nasuta were among the least severely bleached whereas
arborescent species, including A. listeri, A. grandis and A.
aspera, were among the most severely bleached (Figures 2B,
4A). Species’ mean bleaching severity values ranged from 74 (for
A. aculeus) to 95 (forA. carduus) and we observed relatively small
within-species variation in bleaching severity with the coefficient
of variation of bleaching severity for each species ranging from 1
to 21% (average 10%). However, clear interpretation of among-
species variation is hindered by differences in sample sizes; our
assessment of the in situ Acropora community meant that we
observed only single colonies of some species but >40 colonies
of other species (Figure 4A). In addition, formal model selection
did not support the inclusion of “species within site” as a random
effect in the GLME (likelihood ratio test, model with “species
within site” was not superior to a model with only “site” as
a random effect, likelihood ratio 0.49, p = 0.48). This result
indicates that differences in bleaching intensity among species
were generally consistent among sites. Finally, although data
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FIGURE 2 | Environmental and morphological correlates of bleaching severity for corals at sites around Lizard Island in March 2016. Data show effects of (A)

microhabitat, (B) colony morphology, (C) day of observation and (D) distance to open ocean from linear mixed effects model with N = 596 coral colonies, site

included as a random effect, and main effects of the minimal model obtained from backwards deletion of non-significant terms.

documenting symbiont clade diversity for the coral species we
observed were too sparse to permit formal analysis, we found no
clear indication that species which associated with more than one
symbiont clade bleached less severely (Figure 4B).

Competition intensity had no effect on bleaching severity
[GLME, “competition” effect, F(3, 570) = 2.2, p = 0.09], nor
did the presence of soft corals [GLME, “soft corals” effect,
F(1, 570) = 0.31, p = 0.58], or the size of the coral colony
[GLME, “colony area” effect, F(1, 570) = 0.02, p = 0.90]. We
found no evidence that distance from the open ocean, depth,
or competition intensity affected bleaching severity differently
for different colony morphologies [GLME, “morphology by
distance,” F(5, 535) = 1.8, p = 0.12; “morphology by depth,”
F(5, 535) = 1.0, p = 0.39; “morphology by competition,” F(15, 535)
= 0.9, p = 0.57]. Similarly, the effect of competition intensity
on bleaching severity did not depend on colony size [GLME,
“competition by colony area,” F(3, 535) = 0.57, p = 0.63], nor
did the effect of distance from the open ocean depend on

colony size [GLME, “colony area by distance,” F(1, 535) = 1.9,
p = 0.16]. Finally, our analysis did not support the hypothesis
that different morphologies bleached at different rates [GLME,
“day by morphology,” F(5, 535) = 0.63, p= 0.68].

Published records of bleaching severity of Acropora species
from previous bleaching events indicate high variability between
morphologies (Figure 5), as well as high variability within and
among species (Figure 6). Consistent with our observations
of Acropora at Lizard Island, the literature demonstrates
that arborescent and hispidose Acropora are more frequently
observed to be severely bleached, while arborescent tables
are among the least severely bleached in both datasets
(Figures 2B, 5). However, digitate and tabular morphologies
showed contrasting bleaching severity at Lizard Island compared
with the literature. When the responses of different coral species
are considered, the literature indicates a greater degree of within-
and among-species variability in bleaching severity than we
observed at Lizard Island, despite having similar number of
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FIGURE 3 | Relative frequency of different microhabitats for Acropora colonies

(N = 596) observed at lagoonal sites (>510m from reef edge, 6 sites) and reef

edge sites (<410m from reef crest, 4 sites).

observations in both cases (N = 596 colonies measured at Lizard
Island, N = 532 literature records), and data for a large number
of species in both cases (40 species at Lizard Island, 87 species
in the literature). In the literature, for the 48 species with at
least 5 records of bleaching severity, 27% (13 species) showed
high fidelity to a single bleaching category despite inevitable
variation in the intensity of thermal stress among locations
and bleaching events. In addition, 63% of species had records
of bleaching within at least 3 categories, and 23% of species
showed the full range of bleaching severity scores (from none
to severe, Figure 6). Only one species (A. desalwii) was never
recorded to show above “moderate” bleaching, likely due to its
restricted geographic distribution and occurrence below 15m
depth (Wallace, 1999). Cluster analysis of the literature data
for the subset of Acropora species we observed at Lizard Island
revealed 7 clusters based on the bleaching severity categories
most often recorded for those species during previous bleaching
events (Figure 7). However, we found no evidence of systematic
variation in average bleaching scores measured at Lizard Island
for these clusters of species (Figure 8).

DISCUSSION

The results of this study show that during severe thermal stress,
small-scale spatial variation in the bleaching susceptibility of
branching corals is linked to microhabitat availability, and the
proximity of sites to the open ocean, and that bleaching severity
worsens over a very short time-frame (∼1 week). We found
no evidence that water depth (range −0.5 to 5m below LAT),
competition intensity (range no competition to competitors

surrounding entire colony circumference), or colony size (range
5–90 cm diameter) systematically influenced bleaching severity.
At our study location, different colony morphologies differed in
their bleaching severity under temperature stress, but within- and
among-species variation in bleaching severity was low compared
with the variation reported in the literature.

Environmental Drivers of Bleaching
Severity
Our results generally support the hypothesis that coral bleaching
is caused by a combination of high water temperature and
high solar radiation (Jokiel and Coles, 1990; Lesser et al.,
1990; Brown et al., 1994). Colonies in shaded microhabitats
(crevices and overhangs) were less severely bleached than those
in microhabitats with higher light exposure (open, elevated,
and sand). The structural complexity of reefs causes high
variation in irradiance among microhabitats (Brakel, 1979),
whereby overhangs and crevices receive ≤40% of the irradiance
that reaches open habitats at a similar depth (3–5m, Anthony
and Hoegh-Guldberg, 2003). Consistent with previous studies
(e.g., Williams et al., 2010), colonies in sandy patches were
the most severely bleached, likely because carbonate sand is
highly reflective and amplifies light intensity (Ortiz et al., 2009).
While colonies in microhabitats with low irradiance can have
low survival (Baird and Hughes, 2000) and growth (Anthony
and Hoegh-Guldberg, 2003) under normal conditions, our
results support that crevice and overhang habitats may serve
as refuges from thermal stress (see also West and Salm, 2003).
Consequently, reefs’ structural complexity supports ecosystem
functioning and biodiversity not only by providing habitat
and shelter for mobile reef organisms (Syms and Jones, 2000;
Pratchett et al., 2008), but also by providing microhabitats that
can increase coral survival during periods of thermal stress.
In contrast to the strong effect of microhabitat, competition
intensity had no effect on bleaching severity. One explanation
for this is that some corals retract their polyps when exposed to
high water temperatures (Jones et al., 2000) which might lower
the incidence of contact between competitors and/or prevent the
release of secondary metabolites. However, other species increase
their feeding rates in response to bleaching (Grottoli et al., 2006),
which is likely to increase the incidence of tissue contact between
adjacent colonies. Further research into species-specific tissue
retraction behaviors during thermal stress is required to explain
this result.

In our study, water depth did not influence bleaching severity
for corals that occur within the upper ∼6m depths of the reef. A
likely explanation for this finding is that water temperatures are
often similar across this depth range, as the thermocline occurs
at depths that are usually well below 20m on coral reefs (e.g.,
Grigg, 2006). Moreover, the generally high water clarity at the
study sites means there would have been limited attenuation
of light over this depth range. Both still water conditions and
water clarity increase the penetration depth of solar radiation into
seawater, consequently increasing radiant heating throughout the
water column and reducing variability in temperature with depth
(Glynn, 1993; Brown, 1997). In our dataset, 90% of the surveyed
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FIGURE 4 | Variation in bleaching severity within- and between-species in the genus Acropora observed at sites around Lizard Island in March 2016. Bars show the

mean bleaching severity (colony “whiteness”) measured from white-balanced images of colonies of each species. Error bars show standard error and numbers

adjacent to error bars indicate sample sizes. In (A) bars are colored by colony morphology as: black (corymbose), gray (arborescent table), white (arborescent), yellow

(table), blue (hispidose), and green (digitate) and numbers indicate colonies observed in the field. In (B) bars are colored by symbiont association as: black (species

has been recorded to associate with multiple symbiont types) and white (species has been recorded to only associate with a single symbiont type) and numbers

indicate records of Symbiodinium type in the Geosymbio database.

colonies were located at a depth of <2.5m below LAT (∼3–4m
water depth given the tidal range at the location). Based on
estimates of light attenuation from other offshore reefs with high
water clarity (Cooper et al., 2007), light intensity at this depth
would be ∼70% of subsurface light intensity. Collectively these
results indicate that crevice and overhang microhabitats provide
a greater shading effect than light attenuation with depth in clear
waters across the surveyed depth range. The absence of a depth
effect also demonstrates that abnormally low sea levels were not
the cause of coral bleaching at our study location. Although
low sea levels due to El Niño Southern Oscillation have been

associated with a local coral mortality event in Indonesia (Ampou
et al., 2017), a strong depth-dependent pattern of bleaching
severity, with higher severity in the shallowest depths (i.e., <1m
depth), would be expected in areas where coral bleaching was
caused by tidal emersion.

We used distance from the open ocean as a metric to
capture potential spatial variation in wave energy and other
environmental conditions between reef-edge and lagoonal
sites. Previous studies reveal contrasting effects of water
flow on bleaching severity. Thermal bleaching is linked to
photoinhibition of photosynthesis (e.g., Jones et al., 2000) and

Frontiers in Marine Science | www.frontiersin.org 9 November 2017 | Volume 4 | Article 376

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Hoogenboom et al. Determinants of Coral Bleaching Severity

FIGURE 5 | Records of bleaching severity for different Acropora colony

morphologies compiled from the literature. Bars show the percentage of

records in the literature for each colony morphology in each bleaching severity

category (N = 429). Data for elkhorn and encrusting colony morphologies

have been excluded to facilitate comparison with data from Lizard Island

plotted in Figure 2B. Numbers of records for each morphology are 19 (Arb.

Table), 70 (digitate), 95 (corymbose), 64 (table), 149 (Arborescent) and 32

(hispidose/caespitose).

this inhibition can be mitigated by higher water flow (Nakamura
et al., 2005). However, contrary to such effects, we found lower
bleaching severity in lagoon sites which generally have low
wave energy and low flow compared with reef edge locations
(Fulton and Bellwood, 2005). This result is consistent with a
field study in the Indian Ocean which also found a positive
correlation between bleaching intensity and water flow speed
(McClanahan et al., 2007). Coral reef lagoons are characterized
by shallow water with limited mixing, which facilitates heating
until surface waves force cooler waters over the reef crest
(Monismith, 2007). Consequently, corals in lagoon environments
experience greater variability in their local temperature. Heat
stress experiments indicate that corals from habitats with high
variability in temperature have lower mortality rates than corals
from habitats with moderate thermal variability (Oliver and
Palumbi, 2011). While we do not have site-specific temperature
data at our survey sites, temperature loggers deployed at the
study location indicate that the lagoon had slightly higher and
more variable temperatures than the reef edge during December
through to March 2016 (reef edge site: average 29.7◦C range
27.9–31.7◦C; lagoon site: average 30.0◦C range 25.6–33.2◦C).
Overall, our results support the hypothesis that prior exposure to
variable temperature regimes can promote thermal tolerance of
coral colonies. Nevertheless, the declining bleaching severity with
distance from the open ocean might also be related to differences
in microhabitat availability across this gradient as we observed a
higher frequency of crevice microhabitats, and a lower frequency
of open microhabitats, at lagoonal sites.

Among-Species Variation in Bleaching
Severity
Bleaching severity differed among the various branching
morphologies of Acropora observed at Lizard Island. Previous

studies have reported disparate results regarding the effect
of colony morphology on bleaching, including: no clear
effect of morphology (Williams et al., 2010); higher bleaching
susceptibility for branching and tabular corals compared with
massive and encrusting colonies (Marshall and Baird, 2000;
Loya et al., 2001); and higher bleaching severity of massive
corals compared with branching corals (Ortiz et al., 2009).
These disparate results might be partially explained by variation
in growth rates, both among-species and among-locations
due to changes in environmental conditions. Fast-growing
branching morphologies are more susceptible to bleaching
than morphologies with slower growth rates (e.g., massive
corals, Hoegh-Guldberg and Salvat, 1995; Marshall and Baird,
2000; Brandt, 2009). This pattern is thought to be related to
metabolic rates: fast-growing colonies have higher metabolic
rates and, thus, accumulate more harmful oxygen free radicals
which results in oxidative stress that is linked to bleaching
susceptibility (e.g., Jokiel and Coles, 1974; Hoegh-Guldberg and
Salvat, 1995; Baird and Marshall, 2002). Among Acropora corals
specifically, a recent study by Dornelas et al. (2017) showed that
digitate and corymbose growth forms have slower growth rates
than arborescent and tabular growth forms. These results are
broadly consistent with the bleaching severity of these species
reported in the literature. However, in our surveys, tabular
corals were the least severely bleached despite having rapid
growth rates (Dornelas et al., 2017). At present, we do not
have a clear explanation for these contrasting results and further
studies are required to disentangle the influence of growth rate
compared with other environmental variables on coral bleaching
susceptibility.

The type of Symbiodinium present within coral tissues can
have a significant influence on the bleaching susceptibility of
corals (e.g., Glynn, 1993; Baker, 2003; Berkelmans and Van
Oppen, 2006; Abrego et al., 2008). In particular, some corals can
increase their thermal tolerance if they can change the dominant
symbiont clade in their tissues to a more thermally tolerant one
(Berkelmans and Van Oppen, 2006). This implies that corals
harboring multiple symbiont types potentially have an ecological
advantage if they can shuffle their symbionts to “match”
their ambient environmental conditions. However, under times
of stress, this advantage can only manifest if the symbiont
community includes symbionts that are tolerant to a given
stressor. Our data showed no clear relation between bleaching
severity and the capacity of Acropora species to harbor multiple
Symbiodinium types. This result suggests that it is the presence
of a specific heat-tolerant symbiont, rather than the ability to
host multiple symbiont types, that confers thermal tolerance. We
note, however, that while there is an increasing research emphasis
on the functional differences between Symbiodinium clades (e.g.,
Suggett et al., 2015, 2017), the coral species coverage of these
data remains relatively sparse and this constrained our analyses.
We limited our analysis to the level of Symbiodinium clades,
but differences in thermal tolerance exist among Symbiodinium
belonging to the same clade (Tchernov et al., 2004; Sampayo
et al., 2008; Correa and Baker, 2009; LaJeunesse et al., 2014).
Thus, while our results suggest that Acropora species known
to associate with one or multiple Symbiodinium clades did not
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FIGURE 6 | Records of bleaching severity for different Acropora species compiled from the literature. Bars show the percentage of records in the literature for each

species in each bleaching severity category (N = 527) and numbers adjacent to bars indicate number of records per species.
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FIGURE 7 | Cluster analysis of Acropora species observed at Lizard Island

based on records of occurrence of different bleaching severity in the literature.

Color bars adjacent to each cluster show the bleaching severity observed in at

least 20% of records for the species (dark blue, no bleaching; pale blue, low

bleaching; yellow, moderate bleaching; orange, high bleaching; red, severe

bleaching). Percentage values adjacent to color bars show percentage of

records in each bleaching category and values in parentheses show number of

records.

exhibit differences in bleaching resistance, finer-scale resolution
of symbiont identities may have explained additional variation in
bleaching intensity (Sampayo et al., 2008).

A Standardized Method for Measuring
Bleaching Severity
The image analysis technique developed here provides a sensitive
measure of bleaching severity that captures gradation within and
between species, and that overcomes some of the limitations of
survey observation methods (e.g., Siebeck et al., 2006). First, our
technique eliminates in situ observer bias and corrects for color
variation due to differences in the in situ light environment.

FIGURE 8 | Mean bleaching severity for different groups of Acropora species

observed at Lizard Island. Groups were identified using hierarchical cluster

analysis and error bars show standard error.

Second, the data are continuous which allows a more precise
measure of bleaching severity by avoiding the loss of information
that occurs with categorical data. Third, photographs provide a
permanent photographic record of the state of each individual
colony which may be useful for future comparisons. Finally,
this technique can be developed further, and extended to
other coral groups, by quantifying the “whiteness” of healthy
corals to provide a species-specific baseline for coral colony
health in the absence of environmental stressors. Despite these
advantages, this new technique is more time consuming than
in situ observer based techniques. White-balancing and color
analysis took ∼3–5min per image, with approximately half of
this time spent on white-balancing. In addition, many corals
contain fluorescent proteins in their tissues which give colonies
a blue or pink colouration that overlays the golden brown color
of the Symbiodinium within the coral cells (e.g., Alieva et al.,
2008). Our technique likely underestimates bleaching severity of
heavily pigmented colonies because these host-pigments make
them appear to be less white than a non-pigmented colony
with the same level of bleaching (i.e., symbiont loss). However,
this issue makes our results conservative as to the differences
betweenmorphologies, microhabitats and sampling days because
it introduces additional variability in the dataset. We also note
that, when colonies are only partially bleached (e.g., where the
upper surface of the colony is whiter than the lower surfaces,
Harriott, 1985), more than four measurement points may be
needed to accurately represent the color distribution of each
colony.

CONCLUSIONS

During the extreme heat stress that affected the northern GBR
in 2016, 97% of Acropora colonies observed at our study
location were pale or bleached, and ∼70% of colonies had
whiteness values consistent with a categorization of “severe”
bleaching. In contrast, in previous bleaching events nearly a
quarter of Acropora species were reported to show high within-
species variability in bleaching severity, with scores ranging from
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“none” to “severe.” Overall, we consistently observed severe
bleaching during the extreme thermal anomaly experienced at
our study location, in comparison to more variable bleaching
severity reported during a broad range of bleaching events
described in the literature. These comparisons highlight the
importance of measuring and reporting the magnitude of
thermal stress experienced at different sites during bleaching
so that species- and/or location-specific temperature thresholds
for different levels of bleaching can be quantified. Our results
also highlight the importance of monitoring and reporting
the timing of bleaching surveys relative to the onset of
thermal stress, as our new image analysis technique detected
a 10% increase in bleaching severity over a period of 1
week. Microhabitat structure, but not competition intensity,
water depth or colony size, also contributed to variation in
bleaching severity of Acropora corals. Crevices and overhang
microhabitats, which can mitigate bleaching severity, are
more prevalent in structurally complex reefs. Such complexity
is a product of the successful recruitment and growth of
morphologically complex species, such as Acropora species
that are important contributors to spatial complexity in Indo-
Pacific reefs (Pratchett et al., 2008). Collectively, these results
suggest a negative feedback loop whereby bleaching reduces the
abundance of branching species, which lowers the occurrence
of shaded microhabitats, which then leads to more severe
bleaching.
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