4 research outputs found

    Systemic Inflammation in Preclinical Ulcerative Colitis

    Get PDF
    Background & Aims: Preclinical ulcerative colitis is poorly defined. We aimed to characterize the preclinical systemic inflammation in ulcerative colitis, using a comprehensive set of proteins. Methods: We obtained plasma samples biobanked from individuals who developed ulcerative colitis later in life (n = 72) and matched healthy controls (n = 140) within a population-based screening cohort. We measured 92 proteins related to inflammation using a proximity extension assay. The biologic relevance of these findings was validated in an inception cohort of patients with ulcerative colitis (n = 101) and healthy controls (n = 50). To examine the influence of genetic and environmental factors on these markers, a cohort of healthy twin siblings of patients with ulcerative colitis (n = 41) and matched healthy controls (n = 37) were explored. Results: Six proteins (MMP10, CXCL9, CCL11, SLAMF1, CXCL11 and MCP-1) were up-regulated (P < .05) in preclinical ulcerative colitis compared with controls based on both univariate and multivariable models. Ingenuity Pathway Analyses identified several potential key regulators, including interleukin-1ß, tumor necrosis factor, interferon-gamma, oncostatin M, nuclear factor-¿B, interleukin-6, and interleukin-4. For validation, we built a multivariable model to predict disease in the inception cohort. The model discriminated treatment-naïve patients with ulcerative colitis from controls with leave-one-out cross-validation (area under the curve = 0.92). Consistently, MMP10, CXCL9, CXCL11, and MCP-1, but not CCL11 and SLAMF1, were significantly up-regulated among the healthy twin siblings, even though their relative abundances seemed higher in incident ulcerative colitis. Conclusions: A set of inflammatory proteins are up-regulated several years before a diagnosis of ulcerative colitis. These proteins were highly predictive of an ulcerative colitis diagnosis, and some seemed to be up-regulated already at exposure to genetic and environmental risk factors. © 2021 The Author

    The prevalence and transcriptional activity of the mucosal microbiota of ulcerative colitis patients

    Get PDF
    Active microbes likely have larger impact on gut health status compared to inactive or dormant microbes. We investigate the composition of active and total mucosal microbiota of treatment-naïve ulcerative colitis (UC) patients to determine the microbial picture at the start-up phase of disease, using both a 16S rRNA transcript and gene amplicon sequencing. DNA and RNA were isolated from the same mucosal colonic biopsies. Our aim was to identify active microbial members of the microbiota in early stages of disease and reveal which members are present, but do not act as major players. We demonstrated differences in active and total microbiota of UC patients when comparing inflamed to non-inflamed tissue. Several taxa, among them the Proteobacteria phyla and families therein, revealed lower transcriptional activity despite a high presence. The Bifidobacteriaceae family of the Actinobacteria phylum showed lower abundance in the active microbiota, although no difference in presence was detected. The most abundant microbiota members of the inflamed tissue in UC patients were not the most active. Knowledge of active members of microbiota in UC patients could enhance our understanding of disease etiology. The active microbial community composition did not deviate from the total when comparing UC patients to non-IBD controls

    Analysis of Systemic Epigenetic Alterations in Inflammatory Bowel Disease: Defining Geographical, Genetic and Immune-Inflammatory influences on the Circulating Methylome

    Get PDF
    Background Epigenetic alterations may provide valuable insights into gene-environment interactions in the pathogenesis of inflammatory bowel disease [IBD]. Methods Genome-wide methylation was measured from peripheral blood using the Illumina 450k platform in a case-control study in an inception cohort (295 controls, 154 Crohns disease [CD], 161 ulcerative colitis [UC], 28 IBD unclassified [IBD-U)] with covariates of age, sex and cell counts, deconvoluted by the Houseman method. Genotyping was performed using Illumina HumanOmniExpressExome-8 BeadChips and gene expression using the Ion AmpliSeq Human Gene Expression Core Panel. Treatment escalation was characterized by the need for biological agents or surgery after initial disease remission. Results A total of 137 differentially methylated positions [DMPs] were identified in IBD, including VMP1/MIR21 [p = 9.11 x 10(-15)] and RPS6KA2 [6.43 x 10(-13)], with consistency seen across Scandinavia and the UK. Dysregulated loci demonstrate strong genetic influence, notably VMP1 [p = 1.53 x 10(-15)]. Age acceleration is seen in IBD [coefficient 0.94, p &amp;lt; 2.2 x 10(-16)]. Several immuno-active genes demonstrated highly significant correlations between methylation and gene expression in IBD, in particular OSM: IBD r = -0.32, p = 3.64 x 10(-7) vs non-IBD r = -0.14, p = 0.77]. Multi-omic integration of the methylome, genome and transcriptome also implicated specific pathways that associate with immune activation, response and regulation at disease inception. At follow-up, a signature of three DMPs [TAP1, TESPA1, RPTOR] were associated with treatment escalation to biological agents or surgery (hazard ratio of 5.19 [CI: 2.14-12.56], logrank p = 9.70 x 10(-4)). Conclusion These data demonstrate consistent epigenetic alterations at diagnosis in European patients with IBD, providing insights into the pathogenetic importance and translational potential of epigenetic mapping in complex disease.Funding Agencies|European Commission [2858546]; Wellcome Trust [WT097943MA]</p
    corecore