31 research outputs found

    Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice.

    Get PDF
    International audienceMitochondrial dysfunction in skeletal muscle has been implicated in the development of type 2 diabetes. However, whether these changes are a cause or a consequence of insulin resistance is not clear. We investigated the structure and function of muscle mitochondria during the development of insulin resistance and progression to diabetes in mice fed a high-fat, high-sucrose diet. Although 1 month of high-fat, high-sucrose diet feeding was sufficient to induce glucose intolerance, mice showed no evidence of mitochondrial dysfunction at this stage. However, an extended diet intervention induced a diabetic state in which we observed altered mitochondrial biogenesis, structure, and function in muscle tissue. We assessed the role of oxidative stress in the development of these mitochondrial abnormalities and found that diet-induced diabetic mice had an increase in ROS production in skeletal muscle. In addition, ROS production was associated with mitochondrial alterations in the muscle of hyperglycemic streptozotocin-treated mice, and normalization of glycemia or antioxidant treatment decreased muscle ROS production and restored mitochondrial integrity. Glucose- or lipid-induced ROS production resulted in mitochondrial alterations in muscle cells in vitro, and these effects were blocked by antioxidant treatment. These data suggest that mitochondrial alterations do not precede the onset of insulin resistance and result from increased ROS production in muscle in diet-induced diabetic mice

    Modulation du métabolisme énergétique du muscle par les nutriments et la nutrition : Rôle potentiel d'un dialogue muscle squelettique-tissu adipeux et implication du métabolisme des lipides

    No full text
    Numéro national de thèse : 2006CLF1MM15 Diplôme : Dr. d'UniversiteObesity is frequently associated with insulin resistance, a feature that precedes by 10 to 20 years the clinical development of type 2 diabetes. These metabolic disturbances are generally combined with mitochondrial dysfunction in skeletal muscle. From these findings has emerged the hypothesis that mitochondria may play a causal role in the aetiology of such pathologies. The aim of this work was 1- to investigate the impact of nutrition on muscle energy metabolism and more particularly on mitochondrial activity and 2- to study the potential role of a cross talk between skeletal muscle and adipose tissue in the induction of mitochondrial dysfunction. A cross study was designed in order to examine the effect of nutrients (quality and quantity) on muscle energy metabolism in Wistar rats. Once our model was validated, a chronological study was used to determine the sequence of events leading to metabolic disorders. This work demonstrates that nutrition, and above all, excess energy intake, influences mitochondrial activity (OXPHOS activity and reactive species production), despite increased synthesis of mitochondrial proteins. These adaptations are muscle-type specific and alter more specifically the oxidative fibers. The decrease in mitochondrial oxidative capacities is not causally related to insulin resistance. However, the results evidence that the enhancement of mitochondrial activity may be involved in the improvement of lipid and glucose homeostasis. On the whole, this work confirms that any strategy to reduce fatty acids availability is a relevant approach to prevent the development of metabolic disorders.L'obésité est fréquemment associée à une insulinorésistance, étape qui précède de 10 à 20 ans l'apparition du diabète de type 2. Ces perturbations métaboliques s'accompagnent généralement d'un dysfonctionnement mitochondrial dans le muscle squelettique. De ces observations a émergé l'hypothèse d'un rôle causal des mitochondries dans l'étiologie de ces pathologies. L'objectif de ce travail était 1- de tester l'impact de la nutrition sur le métabolisme énergétique du muscle et plus particulièrement sur l'activité mitochondriale et 2- d'étudier le rôle potentiel d'un dialogue entre le muscle et le tissu adipeux dans l'induction du dysfonctionnement mitochondrial. Une étude transversale a été mise en place afin d'analyser l'effet des nutriments (qualité et quantité) sur le métabolisme énergétique du muscle du rat Wistar. Après validation du modèle, une approche chronologique a permis d'analyser la séquence d¤installation des perturbations métaboliques. Ce travail démontre que la nutrition, et par-dessus tout, l'excès d'énergie, perturbe l'activité mitochondriale (activité OXPHOS et production de radicaux libres), malgré une stimulation de la synthèse des protéines mitochondriales. Ces adaptations diffèrent selon la typologie du muscle et affectent plus spécifiquement les fibres oxydatives. La diminution des capacités oxydatives mitochondriales dans le muscle n'est pas le facteur causal conduisant au développement de l'insulinorésistance. Cependant, les résultats soulignent le fait qu'une stimulation de l'activité mitochondriale peut participer à l'amélioration de l'homéostasie lipidique et glucidique. Finalement, l'ensemble de ce travail confirme que toute stratégie visant à réduire la disponibilité en acides gras est une approche pertinente de prévention des maladies métaboliques

    Modulation du métabolisme énergétique du muscle par les nutriments et la nutrition (rôle potentiel d'un dialogue muscle squelettique-tissu adipeux et implication du métabolisme des lipides)

    No full text
    L'obésité est fréquemment associée à une insulinorésistance, étape qui précède de 10 à 20 ans l'apparition du diabète de type 2. Ces perturbations métaboliques s'accompagnent généralement d'un dysfonctionnement mitochondrial dans le muscle squelettique. De ces observations a émergé l'hypothèse d'un rôle causal des mitochondries dans l'étiologie de ces pathologies. L'objectif de ce travail était 1- de tester l'impact de la nutrition sur le métabolisme énergétique du muscle et plus particulièrement sur l'activité mitochondriale et 2- d'étudier le rôle potentiel d'un dialogue entre le muscle et le tissu adipeux dans l'induction du dysfonctionnement mitochondrial. Une étude transversale a été mise en place afin d'analyser l'effet des nutriments (qualité et quantité) sur le métabolisme énergétique du muscle du rat Wistar. Après validation du modèle, une approche chronologique a permis d'analyser la séquence d installation des perturbations métaboliques. Ce travail démontre que la nutrition, et par-dessus tout, l'excès d'énergie, perturbe l'activité mitochondriale (activité OXPHOS et production de radicaux libres), malgré une stimulation de la synthèse des protéines mitochondriales. Ces adaptations diffèrent selon la typologie du muscle et affectent plus spécifiquement les fibres oxydatives. La diminution des capacités oxydatives mitochondriales dans le muscle n'est pas le facteur causal conduisant au développement de l'insulinorésistance. Cependant, les résultats soulignent le fait qu'une stimulation de l'activité mitochondriale peut participer à l'amélioration de l'homéostasie lipidique et glucidique. Finalement, l'ensemble de ce travail confirme que toute stratégie visant à réduire la disponibilité en acides gras est une approche pertinente de prévention des maladies métaboliques.Obesity is frequently associated with insulin resistance, a feature that precedes by 10 to 20 years the clinical development of type 2 diabetes. These metabolic disturbances are generally combined with mitochondrial dysfunction in skeletal muscle. From these findings has emerged the hypothesis that mitochondria may play a causal role in the aetiology of such pathologies. The aim of this work was 1- to investigate the impact of nutrition on muscle energy metabolism and more particularly on mitochondrial activity and 2- to study the potential role of a cross talk between skeletal muscle and adipose tissue in the induction of mitochondrial dysfunction. A cross study was designed in order to examine the effect of nutrients (quality and quantity) on muscle energy metabolism in Wistar rats. Once our model was validated, a chronological study was used to determine the sequence of events leading to metabolic disorders. This work demonstrates that nutrition, and above all, excess energy intake, influences mitochondrial activity (OXPHOS activity and reactive species production), despite increased synthesis of mitochondrial proteins. These adaptations are muscle-type specific and alter more specifically the oxidative fibers. The decrease in mitochondrial oxidative capacities is not causally related to insulin resistance. However, the results evidence that the enhancement of mitochondrial activity may be involved in the improvement of lipid and glucose homeostasis. On the whole, this work confirms that any strategy to reduce fatty acids availability is a relevant approach to prevent the development of metabolic disorders.CLERMONT FD-BCIU-Santé (631132104) / SudocPARIS-BIUP (751062107) / SudocSudocFranceF

    Study of iron metabolism disturbances in an animal model of insulin resistance

    No full text
    International audienceThe relationship between iron and insulin-resistance (IR) is documented by the positive correlation between iron stores and IR. Moreover, some patients exhibited a hepatic iron overload associated with IR (HIO-IR) but the mechanism involved in this overload is not known. Thus, we studied the iron metabolism disturbances in an animal model of IR and the influence of provoked hyperglycemia/hyperinsulinemia on plasma iron parameters. Wistar rats were fed a control or a high-fat/high-energy (HF/HE) diet. Plasma glucose, insulin, iron, transferrin and transferrin saturation (TS) were measured during intra-peritoneal glucose test tolerance (IPGTT) compared to saline. Hemogram, tissue iron concentrations and hepatic hepcidin mRNA expression were determined at the end of experiment. HF/HE rats exhibited higher body and liver weights, increased IR-index and hemoglobin concentration. Iron content was lower in the spleen of HF/HE rats and tended to decrease in the liver as compared to controls. Transferrin values were higher and these of TS lower in HF/HE group. The hepcidin mRNA was 3.5-fold lower in HF/HE rats than in controls. IPGTT had no effect on iron status parameters in both groups. As reflected by higher hemoglobin concentration, IR could increase erythropoĂŻesis which enhances iron requirement. Iron stores and TS value decreased leading to a down-regulation of hepcidin expression which increased iron absorption. Hepcidin expression should be investigated in metabolic syndrome and hepatic iron overload associated with IR
    corecore