58,270 research outputs found

    Instability of three dimensional conformally dressed black hole

    Get PDF
    The three dimensional black hole solution of Einstein equations with negative cosmological constant coupled to a conformal scalar field is proved to be unstable against linear circularly symmetric perturbations.Comment: 5 pages, REVTe

    Habitat conversion and global avian biodiversity loss

    Get PDF
    The magnitude of the impacts of human activities on global biodiversity has been documented at several organizational levels. However, although there have been numerous studies of the effects of local-scale changes in land use (e.g. logging) on the abundance of groups of organisms, broader continental or global-scale analyses addressing the same basic issues remain largely wanting. None the less, changing patterns of land use, associated with the appropriation of increasing proportions of net primary productivity by the human population, seem likely not simply to have reduced the diversity of life, but also to have reduced the carrying capacity of the environment in terms of the numbers of other organisms that it can sustain. Here, we estimate the size of the existing global breeding bird population, and then make a first approximation as to how much this has been modified as a consequence of land-use changes wrought by human activities. Summing numbers across different land-use classes gives a best current estimate of a global population of less than 100 billion breeding bird individuals. Applying the same methodology to estimates of original land-use distributions suggests that conservatively this may represent a loss of between a fifth and a quarter of pre-agricultural bird numbers. This loss is shared across a range of temperate and tropical land-use types

    The 2D analogue of the Reissner-Nordstrom solution

    Get PDF
    A two-dimensional (2D) dilaton gravity model, whose static solutions have the same features of the Reissner-Nordstrom solutions, is obtained from the dimensional reduction of a four-dimensional (4D) string effective action invariant under S-duality transformations. The black hole solutions of the 2D model and their relationship with those of the 4D theory are discussed.Comment: 5 pages, Plain-Tex, no figure

    Gravastars and Black Holes of Anisotropic Dark Energy

    Full text link
    Dynamical models of prototype gravastars made of anisotropic dark energy are constructed, in which an infinitely thin spherical shell of a perfect fluid with the equation of state p=(1γ)σp = (1-\gamma)\sigma divides the whole spacetime into two regions, the internal region filled with a dark energy fluid, and the external Schwarzschild region. The models represent "bounded excursion" stable gravastars, where the thin shell is oscillating between two finite radii, while in other cases they collapse until the formation of black holes. Here we show, for the first time in the literature, a model of gravastar and formation of black hole with both interior and thin shell constituted exclusively of dark energy. Besides, the sign of the parameter of anisotropy (ptprp_t - p_r) seems to be relevant to the gravastar formation. The formation is favored when the tangential pressure is greater than the radial pressure, at least in the neighborhood of the isotropic case (ω=1\omega=-1).Comment: 16 pages, 8 figures. Accepted for publication in Gen. Rel. Gra

    Bolometric light curves of supernovae and post-explosion magnetic fields

    Full text link
    The various effects leading to diversity in the bolometric light curves of supernovae are examined: nucleosynthesis, kinematic differences, ejected mass, degree of mixing, and configuration and intensity of the magnetic field are discussed. In Type Ia supernovae, a departure in the bolometric light curve from the full-trapping decline of 56^{56}Co can occur within the two and a half years after the explosion, depending on the evolutionary path followed by the WD during the accretion phase. If convection has developed in the WD core during the presupernova evolution, starting several thousand years before the explosion, a tangled magnetic field close to the equipartition value should have grown in the WD. Such an intense magnetic field would confine positrons where they originate from the 56^{56}Co decays, and preclude a strong departure from the full-trapping decline, as the supernova expands. This situation is expected to occur in C+O Chandrasekhar WDs as opposed to edge-lit detonated sub-Chandrasekhar WDs. If the pre-explosion magnetic field of the WD is less intense than 1058^{5-8}G, a lack of confinement of the positrons emitted in the 56^{56}Co decay and a departure from full-trapping decline would occur. The time at which it takes place can provide estimates of the original magnetic field of the WD, its configuration, and also of the mass of the supernova ejecta. In SN 1991bg, the bolometric light curve suggests absence of a significant tangled magnetic field (intensity lower than 10310^{3} G). Chandrasekhar-mass models do not reproduce the bolometric light curve of this supernova. For SN 1972E, on the contrary, there is evidence for a tangled configuration of the magnetic field and its light curve is well reproduced by a Chandrasekhar WD explosion.Comment: 54 pages, including 8 figures. To appear in Ap

    Pre-Congestion Notification (PCN) Architecture

    Get PDF
    This document describes a general architecture for flow admission and termination based on pre-congestion information in order to protect the quality of service of established, inelastic flows within a single Diffserv domain.\u

    Observation of the single-electron regime in a highly tunable silicon quantum dot

    Full text link
    We report on low-temperature electronic transport measurements of a silicon metal-oxide-semiconductor quantum dot, with independent gate control of electron densities in the leads and the quantum dot island. This architecture allows the dot energy levels to be probed without affecting the electron density in the leads, and vice versa. Appropriate gate biasing enables the dot occupancy to be reduced to the single-electron level, as evidenced by magnetospectroscopy measurements of the ground state of the first two charge transitions. Independent gate control of the electron reservoirs also enables discrimination between excited states of the dot and density of states modulations in the leads.Comment: 4 pages, 3 figures, accepted for Applied Physics Letter

    A Solvable Model of Two-Dimensional Dilaton-Gravity Coupled to a Massless Scalar Field

    Get PDF
    We present a solvable model of two-dimensional dilaton-gravity coupled to a massless scalar field. We locally integrate the field equations and briefly discuss the properties of the solutions. For a particular choice of the coupling between the dilaton and the scalar field the model can be interpreted as the two-dimensional effective theory of 2+1 cylindrical gravity minimally coupled to a massless scalar field.Comment: 6 pages, RevTeX, to be published in Phys. Rev.
    corecore