58,270 research outputs found
Instability of three dimensional conformally dressed black hole
The three dimensional black hole solution of Einstein equations with negative
cosmological constant coupled to a conformal scalar field is proved to be
unstable against linear circularly symmetric perturbations.Comment: 5 pages, REVTe
Habitat conversion and global avian biodiversity loss
The magnitude of the impacts of human activities on global biodiversity has been documented at several organizational levels. However, although there have been numerous studies of the effects of local-scale changes in land use (e.g. logging) on the abundance of groups of organisms, broader continental or global-scale analyses addressing the same basic issues remain largely wanting. None the less, changing patterns of land use, associated with the appropriation of increasing proportions of net primary productivity by the human population, seem likely not simply to have reduced the diversity of life, but also to have reduced the carrying capacity of the environment in terms of the numbers of other organisms that it can sustain.
Here, we estimate the size of the existing global breeding bird population, and then make a first approximation as to how much this has been modified as a consequence of land-use changes wrought by human activities. Summing numbers across different land-use classes gives a best current estimate of a global population of less than 100 billion breeding bird individuals. Applying the same methodology to estimates of original land-use distributions suggests that conservatively this may represent a loss of between a fifth and a quarter of pre-agricultural bird numbers. This loss is shared across a range of temperate and tropical land-use types
The 2D analogue of the Reissner-Nordstrom solution
A two-dimensional (2D) dilaton gravity model, whose static solutions have the
same features of the Reissner-Nordstrom solutions, is obtained from the
dimensional reduction of a four-dimensional (4D) string effective action
invariant under S-duality transformations. The black hole solutions of the 2D
model and their relationship with those of the 4D theory are discussed.Comment: 5 pages, Plain-Tex, no figure
Gravastars and Black Holes of Anisotropic Dark Energy
Dynamical models of prototype gravastars made of anisotropic dark energy are
constructed, in which an infinitely thin spherical shell of a perfect fluid
with the equation of state divides the whole spacetime
into two regions, the internal region filled with a dark energy fluid, and the
external Schwarzschild region. The models represent "bounded excursion" stable
gravastars, where the thin shell is oscillating between two finite radii, while
in other cases they collapse until the formation of black holes. Here we show,
for the first time in the literature, a model of gravastar and formation of
black hole with both interior and thin shell constituted exclusively of dark
energy. Besides, the sign of the parameter of anisotropy () seems to
be relevant to the gravastar formation. The formation is favored when the
tangential pressure is greater than the radial pressure, at least in the
neighborhood of the isotropic case ().Comment: 16 pages, 8 figures. Accepted for publication in Gen. Rel. Gra
Bolometric light curves of supernovae and post-explosion magnetic fields
The various effects leading to diversity in the bolometric light curves of
supernovae are examined: nucleosynthesis, kinematic differences, ejected mass,
degree of mixing, and configuration and intensity of the magnetic field are
discussed. In Type Ia supernovae, a departure in the bolometric light curve
from the full-trapping decline of Co can occur within the two and a half
years after the explosion, depending on the evolutionary path followed by the
WD during the accretion phase. If convection has developed in the WD core
during the presupernova evolution, starting several thousand years before the
explosion, a tangled magnetic field close to the equipartition value should
have grown in the WD. Such an intense magnetic field would confine positrons
where they originate from the Co decays, and preclude a strong departure
from the full-trapping decline, as the supernova expands. This situation is
expected to occur in C+O Chandrasekhar WDs as opposed to edge-lit detonated
sub-Chandrasekhar WDs. If the pre-explosion magnetic field of the WD is less
intense than 10G, a lack of confinement of the positrons emitted in the
Co decay and a departure from full-trapping decline would occur. The
time at which it takes place can provide estimates of the original magnetic
field of the WD, its configuration, and also of the mass of the supernova
ejecta. In SN 1991bg, the bolometric light curve suggests absence of a
significant tangled magnetic field (intensity lower than G).
Chandrasekhar-mass models do not reproduce the bolometric light curve of this
supernova. For SN 1972E, on the contrary, there is evidence for a tangled
configuration of the magnetic field and its light curve is well reproduced by a
Chandrasekhar WD explosion.Comment: 54 pages, including 8 figures. To appear in Ap
Pre-Congestion Notification (PCN) Architecture
This document describes a general architecture for flow admission and termination based on pre-congestion information in order to protect the quality of service of established, inelastic flows within a single Diffserv domain.\u
Observation of the single-electron regime in a highly tunable silicon quantum dot
We report on low-temperature electronic transport measurements of a silicon
metal-oxide-semiconductor quantum dot, with independent gate control of
electron densities in the leads and the quantum dot island. This architecture
allows the dot energy levels to be probed without affecting the electron
density in the leads, and vice versa. Appropriate gate biasing enables the dot
occupancy to be reduced to the single-electron level, as evidenced by
magnetospectroscopy measurements of the ground state of the first two charge
transitions. Independent gate control of the electron reservoirs also enables
discrimination between excited states of the dot and density of states
modulations in the leads.Comment: 4 pages, 3 figures, accepted for Applied Physics Letter
A Solvable Model of Two-Dimensional Dilaton-Gravity Coupled to a Massless Scalar Field
We present a solvable model of two-dimensional dilaton-gravity coupled to a
massless scalar field. We locally integrate the field equations and briefly
discuss the properties of the solutions. For a particular choice of the
coupling between the dilaton and the scalar field the model can be interpreted
as the two-dimensional effective theory of 2+1 cylindrical gravity minimally
coupled to a massless scalar field.Comment: 6 pages, RevTeX, to be published in Phys. Rev.
- …