245 research outputs found

    A novel design of spacecraft combined attitude & sun tracking system using a versatile fuzzy controller

    Get PDF
    Purpose – The purpose of this paper is to develop a theoretical design for the alternative attitude control of the rotation about the pitch axis for the nadir-pointing spacecraft in the event of inertial actuator faults. Design/methodology/approach – This paper presents a novel and viable solution to that problem using the combined attitude and sun tracking system (CASTS) that was conceived from an engineering problem-solving toolkit called TRIZ. Linear and fuzzy controllers are used to test the spacecraft CASTS architecture. All the relevant governing equations of the control system and disturbance rejection methods are developed. Findings – The performance of the proposed CASTS control strategy is tested through numerical simulations. The results strongly suggest that the novel proposed control scheme is effective and promising for controlling the satellite attitude and sun tracking simultaneously in the presence of disturbance torques. Research limitations/implications – This work is mainly focused on the rigid body of the spacecraft hub that contains all attitude control hardware and payload instrumentation, and does not deal with the vibrations evolving from the propellant sloshing and large flexible appendages such as the deployable solar panels and synthetic aperture radar antennas. Practical implications – The results from this work reveal several practical applications worthy of reducing the weight, size of the spacecraft and, therefore, cost of missions while increasing the instrumentation capabilities. Originality/value – The proposed CASTS solution is a result of looking much wider than one system from a new combination of attitude control and sun tracking, as well as innovative ways of using it

    A HEURISTIC CASCADING FUZZY LOGIC APPROACH TO REACTIVE NAVIGATION FOR UAV

    Get PDF
    ABSTRACT: The capability of navigating Unmanned Aerial Vehicles (UAVs) safely in unknown terrain offers huge potential for wider applications in non-segregated airspace. Flying in non-segregated airspace present a risk of collision with static obstacles (e.g., towers, power lines) and moving obstacles (e.g., aircraft, balloons). In this work, we propose a heuristic cascading fuzzy logic control strategy to solve for the Conflict Detection and Resolution (CD&R) problem, in which the control strategy is comprised of two cascading modules. The first one is Obstacle Avoidance control and the latter is Path Tracking control. Simulation results show that the proposed architecture effectively resolves the conflicts and achieve rapid movement towards the target waypoint. ABSTRAK: Keupayaan mengemudi Kenderaan Udara Tanpa Pemandu (UAV) dengan selamat di kawasan yang tidak diketahui menawarkan potensi yang besar untuk aplikasi yang lebih luas dalam ruang udara yang tidak terasing. Terbang di ruang udara yang tidak terasing menimbulkan risiko perlanggaran dengan halangan statik (contohnya, menara, talian kuasa) dan halangan bergerak (contohnya, pesawat udara, belon). Dalam kajian ini, kami mencadangkan satu strategi heuristik kawalan logik kabur yang melata untuk menyelesaikan masalah Pengesanan Konflik dan Penyelesaian (CD&R), di mana strategi kawalan yang terdiri daripada dua modul melata. Hasil simulasi menunjukkan bahawa seni bina yang dicadangkan berjaya menyelesaikan konflik dan mencapai penerbangan pesat ke arah titik laluan sasaran. KEYWORDS: fuzzy logic; motion planning; obstacle avoidance; path tracking; reactive navigation; UA

    Disturbance observer-based fuzzy control for flexible spacecraft combined attitude & sun tracking system

    Get PDF
    This paper investigates the combined attitude and sun-tracking control problem in the presence of external disturbances and internal disturbances, caused by flexible appendages. A new method based on Pythagorean trigonometric identity is proposed to drive the solar arrays. Using the control input and attitude output, a disturbance observer is developed to estimate the lumped disturbances consisting of the external and internal disturbances, and then compensated by the disturbance observer-based controller via a feed-forward control. The stability analysis demonstrates that the desired attitude trajectories are followed even in the presence of external disturbance and internal flexible modes. The main features of the proposed control scheme are that it can be designed separately and incorporated into the baseline controller to form the observer-based control system, and the combined attitude and sun-tracking control is achieved without the conventional attitude actuators. The attitude and sun-tracking performance using the proposed strategy is evaluated and validated through numerical simulations. The proposed control solution can serve as a fail-safe measure in case of failure of the conventional attitude actuator, which triggered by automatic reconfiguration of the attitude control components

    Single feed circularly polarized crescent-cut and extended corner square microstrip antennas for wireless biotelemetry

    Get PDF
    In this paper, the development of two novel circularly polarized microstrip antennas is thoroughly explained. These antennas are fed by coaxial feeding technique. One of the primary objectives of the proposed work is to tune the antennas to work in ISM band. This frequency band refers to the internationally recognized radio frequency bandwidth which is to be used explicitly for Industrial, Scientific, and Medical applications. Therefore, these antennas would be suitable to use in the field of wireless biotelemetry. Two new antenna design techniques have been introduced to produce circular polarization, and details of these schemes are described. The proposed microstrip antennas are designed and simulated on Advanced Design System (ADS) software. The return loss of the proposed crescent-cut antenna is -19.3 dB at the operating frequency. The extended corner antenna has the return loss of -29.3 dB at the tuned frequency. The simulation results are also presented and discussed

    A fractional-order sliding mode control for nominal and underactuated satellite attitude controls

    Get PDF
    Sliding mode control (SMC) is widely used in many existing nonlinear control solutions due to its capability against external disturbances and uncertainties, while the fractional order control (FOC) is employed as it can further enhance the control performance due to its robustness. This paper attempts to implement a fractional-order sliding mode control (FOSMC) for a small satellite with reaction wheels (RWs). In this work, a conventional SMC was initially designed to cope with the uncertainties of satellite attitude dynamics. In order to improve the attitude control performance, the FOSMC was designed accordingly and the classical chattering problem was alleviated by using the hyperbolic tangent function. This current work is the maiden work on FOSMC especially for small satellites using RWs. The FOSMC was also tested for a satellite with only two functional RWs, in which the control allocation technique is proposed to solve the underactuated satellite attitude control problem. Since the angular momentum of the reaction wheel will become saturated over time, it will be managed using the momentum unloading technique with the unique fuzzy proportional-integral (FPI) control. All control algorithms were numerically treated and analysed. The results show that the FOSMC is effective in achieving the overall desired attitude control performance for nominal and underactuated satellites

    Does export dependence imply more political support in Sino-Africa relation since 2000?

    Get PDF
    published_or_final_versionInternational and Public AffairsMasterMaster of International and Public Affair

    The crystal structure of the DNase domain of colicin E7 in complex with its inhibitor Im7 protein

    Get PDF
    AbstractBackground: Colicin E7 (ColE7) is one of the bacterial toxins classified as a DNase-type E-group colicin. The cytotoxic activity of a colicin in a colicin-producing cell can be counteracted by binding of the colicin to a highly specific immunity protein. This biological event is a good model system for the investigation of protein recognition.Results: The crystal structure of a one-to-one complex between the DNase domain of colicin E7 and its cognate immunity protein Im7 has been determined at 2.3 Å resolution. Im7 in the complex is a varied four-helix bundle that is identical to the structure previously determined for uncomplexed Im7. The structure of the DNase domain of ColE7 displays a novel α/β fold and contains a Zn2+ ion bound to three histidine residues and one water molecule in a distorted tetrahedron geometry. Im7 has a V-shaped structure, extending two arms to clamp the DNase domain of ColE7. One arm (α1∗–loop12–α2∗; where ∗ represents helices in Im7) is located in the region that displays the greatest sequence variation among members of the immunity proteins in the same subfamily. This arm mainly uses acidic sidechains to interact with the basic sidechains in the DNase domain of ColE7. The other arm (loop 23–α3∗–loop 34) is more conserved and it interacts not only with the sidechain but also with the mainchain atoms of the DNase domain of ColE7.Conclusions: The protein interfaces between the DNase domain of ColE7 and Im7 are charge-complementary and charge interactions contribute significantly to the tight and specific binding between the two proteins. The more variable arm in Im7 dominates the binding specificity of the immunity protein to its cognate colicin. Biological and structural data suggest that the DNase active site for ColE7 is probably near the metal-binding site
    corecore