11,146 research outputs found
Stochastically ordered subpopulations and optimal burn-in procedure
Burn-in is a widely used engineering method which is adopted to eliminate defective items before they are shipped to customers or put into the field operation. In the studies of burn-in, the assumption of bathtub shaped failure rate function is usually employed and optimal burn-in procedures are investigated. In this paper, however, we assume that the population is composed of two ordered subpopulations and optimal burn-in procedures are studied in this context. Two types of risks are defined and an optimal burn-in procedure, which minimizes the weighted risks is studied. The joint optimal solutions for the optimal burn-in procedure, which minimizes the mean number of repairs during the field operation, are also investigated.
Interferometric tomography of continuous fields with incomplete projections
Interferometric tomography in the presence of an opaque object is investigated. The developed iterative algorithm does not need to augment the missing information. It is based on the successive reconstruction of the difference field, the difference between the object field to be reconstructed and its estimate, only in the difined region. The application of the algorithm results in stable convergence
Weak ties: Subtle role of information diffusion in online social networks
As a social media, online social networks play a vital role in the social
information diffusion. However, due to its unique complexity, the mechanism of
the diffusion in online social networks is different from the ones in other
types of networks and remains unclear to us. Meanwhile, few works have been
done to reveal the coupled dynamics of both the structure and the diffusion of
online social networks. To this end, in this paper, we propose a model to
investigate how the structure is coupled with the diffusion in online social
networks from the view of weak ties. Through numerical experiments on
large-scale online social networks, we find that in contrast to some previous
research results, selecting weak ties preferentially to republish cannot make
the information diffuse quickly, while random selection can achieve this goal.
However, when we remove the weak ties gradually, the coverage of the
information will drop sharply even in the case of random selection. We also
give a reasonable explanation for this by extra analysis and experiments.
Finally, we conclude that weak ties play a subtle role in the information
diffusion in online social networks. On one hand, they act as bridges to
connect isolated local communities together and break through the local
trapping of the information. On the other hand, selecting them as preferential
paths to republish cannot help the information spread further in the network.
As a result, weak ties might be of use in the control of the virus spread and
the private information diffusion in real-world applications.Comment: Final version published in PR
Recommended from our members
Safety verification of ADA programs in MURPHY
MURPHY is a experimental methodology, which will include an integrated tool set, for building safety-critical, real-time software. Although it is language independent, many safety-critical software projects are currently planning to use Ada. This paper presents the semantic templates for the verification of the safety of Ada programs using Software Fault Tree Analysis. An example is shown of applying the technique to an Ada program, and the tools in the MURPHY tool set to aid in this type of analysis are described
A Concise Total Synthesis of (--)-Maoecrystal Z
The first total synthesis of (--)-maoecrystal Z
is described. The key steps of the synthesis include a
diastereoselective Ti^(III)-mediated reductive epoxide coupling reaction and a diastereoselective Sm^(II)-mediated reductive cascade cyclization reaction. These transformations enabled the preparation of (--)-maoecrystal Z in only 12 steps from (--)-γ-cyclogeraniol
Superfluid-insulator transitions of two-species Bosons in an optical lattice
We consider a realization of the two-species bosonic Hubbard model with
variable interspecies interaction and hopping strength. We analyze the
superfluid-insulator (SI) transition for the relevant parameter regimes and
compute the ground state phase diagram for odd filling at commensurate
densities. We find that in contrast to the even commensurate filling case, the
superfluid-insulator transition occurs with (a) simultaneous onset of
superfluidity of both species or (b) coexistence of Mott insulating state of
one species and superfluidity of the other or, in the case of unit filling, (c)
complete depopulation of one species. The superfluid-insulator transition can
be first order in a large region of the phase diagram. We develop a variational
mean-field method which takes into account the effect of second order quantum
fluctuations on the superfluid-insulator transition and corroborate the
mean-field phase diagram using a quantum Monte Carlo study.Comment: 12 pages, 11 figure
Access to Research: the experience of implementing a pilot in public libraries
The Access to Research project is a collaboration between scholarly publishers and librarians to provide free licensed access to research journals via terminals in public libraries. The project is an element of the ‘balanced package’ proposed by the Finch Working Group on how to expand access to published research in the UK, which reported its recommendations to the UK government in June 2012. We describe the setting up of the project and the findings from a three-month technical pilot prior to the launch of a two-year national pilot in February 2014. The project has already attracted support from the major scholarly publishers, with about 8,400 journal titles now available. The access platform has been shown to be usable by public librarians and library patrons. We are now addressing the challenge of understanding how the public will make use of the system and exploring how best to provide training and education for librarians and users
Superfluid-insulator transition of the Josephson junction array model with commensurate frustration
We have studied the rationally frustrated Josephson-junction array model in
the square lattice through Monte Carlo simulations of D XY-model. For
frustration , the model at zero temperature shows a continuous
superfluid-insulator transition. From the measurement of the correlation
function and the superfluid stiffness, we obtain the dynamical critical
exponent and the correlation length critical exponent . While the dynamical critical exponent is the same as that for cases
, 1/2, and 1/3, the correlation length critical exponent is surprisingly
quite different. When , we have the nature of a first-order transition.Comment: RevTex 4, to appear in PR
Third-order optical autocorrelator for time-domain operation at telecommunication wavelengths
We report on amorphous organic thin films that exhibit efficient third-harmonic generation at telecommunication wavelengths. At 1550 nm, micrometer-thick samples generate up to 17 µW of green light with input power of 250 mW delivered by an optical parametric oscillator. This high conversion efficiency is achieved without phase matching or cascading of quadratic nonlinear effects. With these films, we demonstrate a low-cost, sensitive third-order autocorrelator that can be used in the time-frequency domain
- …