188 research outputs found

    Acupuncture for chronic low back pain: protocol for a multicenter, randomized, sham-controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Use of acupuncture has widely increased in patients with chronic low back pain. However, the evidence supporting its efficacy remains unclear. In this article, we report the design and the protocol of a multi-center randomized sham-controlled trial to treat chronic low back pain. Our goal is to verify the effect of acupuncture on chronic low back pain.</p> <p>Methods/Design</p> <p>This study is a multi-center randomized sham-controlled trial with 2 parallel arms. Participants included in the study met the following criteria: 1) low back pain lasting for at least the last 3 months, 2) a documented ≥ 5 points on a 10 cm visual analog scale for bothersomeness of low back pain at the time of screening and 3) between 18 and 65 years of age. Participants were blinded to the real and sham acupuncture treatments. The real acupuncture treatment group received real acupuncture 2 times a week, during a total of 12 sessions over 6 weeks. The control group received sham acupuncture during the same period. In order to assess the primary and secondary outcome measures, the participants were asked to fill out a questionnaire at the baseline and 6, 8, 12 and 24 weeks after starting the treatments. The primary outcome was measured using the visual analog scale for bothersomeness of low back pain at 8 weeks after the initiation of treatments.</p> <p>Discussion</p> <p>The result of this trial (which will be available in 2010) will demonstrate the efficacy of using acupuncture to treat chronic low back pain.</p> <p>Trial registration</p> <p>This study is registered with the U.S. National Institutes of Health Clinical Trials registry: NCT00815529</p

    Combination treatment with Grb7 peptide and Doxorubicin or Trastuzumab (Herceptin) results in cooperative cell growth inhibition in breast cancer cells

    Get PDF
    Grb7 has potential importance in the progression of cancer. We have previously identified a novel peptide that binds to the SH2 domain of Grb7 and inhibits its association with several different receptor tyrosine kinases. We have synthesised the Grb7 peptide, G7-18NATE, with two different cell penetrating peptides, Penetratin and Tat. In this study, we have shown that both Penetratin- and Tat-conjugated G7-18NATE peptides are able to inhibit the proliferation of SK-BR-3, ZR-75-30, MDA-MB-361 and MDA-MB-231 breast cancer cells. There was no significant effects on breast cancer MCF-7cells, non-malignant MCF 10A or 3T3 cells. In addition, there was no significant inhibition of proliferation by Penetratin or Tat alone or by their conjugates with arbitrary peptide sequence in any of the cell lines tested. We determined the EC50 of G7-18NATE-P peptide for SK-BR-3 cell proliferation to be 7.663 × 10−6 M. Co-treatment of G7-18NATE-P peptide plus Doxorubicin in SK-BR-3 breast cancer cells resulted in an additional inhibition of proliferation, resulting in 56 and 84% decreases in the Doxorubicin EC50 value in the presence of 5 × 10−6 and 1.0 × 10−5 M G7-18NATE-P peptide, respectively. Importantly, the co-treatment with Doxorubicin and the delivery peptide did not change the Doxorubicin EC50. Since Grb7 associates with ErbB2, we assessed whether the peptide inhibitor would have a combined effect with a molecule that targets ErbB2, Herceptin. Co-treatment of Herceptin plus 1.0 × 10−5 M G7-18NATE-P peptide in SK-BR-3 cells resulted in a 46% decrease in the Herceptin EC50 value and no decrease following the co-treatment with Herceptin and penetratin alone. This Grb7 peptide has potential to be developed as a therapeutic agent alone, in combination with traditional chemotherapy, or in combination with other targeting molecules

    Clinical and neuroimaging correlates of antiphospholipid antibodies in multiple sclerosis: a preliminary study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The presence of antiphospholipid antibodies (APLA) in multiple sclerosis (MS) patients has been reported frequently but no clear relationship between APLA and the clinical and neuroimaging features of MS have heretofore been shown. We assessed the clinical and neuroimaging features of MS patients with plasma APLA.</p> <p>Methods</p> <p>A consecutive cohort of 24 subjects with relapsing-remitting (RR) MS were studied of whom 7 were in remission (Rem) and 17 in exacerbation (Exc). All subjects were examined and underwent MRI of brain. Patients' plasma was tested by standard ELISA for the presence of both IgM and IgG antibodies using a panel of 6 targets: cardiolipin (CL), β2 glycoprotein I (β2GPI), Factor VII/VIIa (FVIIa), phosphatidylcholine (PC), phosphatidylserine (PS) and phosphatidylethanolamine (PE).</p> <p>Results</p> <p>In exacerbation up to 80% of MS subjects had elevated titers of IgM antibodies directed against the above antigens. However, in remission, less than half of MS patients had elevated titers of IgM antibodies against one or more of the above antigens. This difference was significant, p < 0.01, for all 6 target antigens. Interestingly, none of the MS patients had elevated plasma titers of IgG against any of the target antigens tested. Correlation analysis between MRI enhancing lesions and plasma levels of APLA revealed high correlation for aPC, aPS and aFVIIa (p ≤ 0.0065), a trend for aPE and aCL (p = 0.056), and no correlation for aβ2GP1. The strongest correlation was for aFVIIa, p = 0.0002.</p> <p>Conclusion</p> <p>The findings of this preliminary study show that increased APLA IgM is associated with exacerbations of MS. Currently, the significance of this association in pathogenesis of MS remains unknown. However, systematic longitudinal studies to measure APLA in larger cohorts of patients with relapsing-remitting MS, particularly before and after treatment with immunomodulatory agents, are needed to confirm these preliminary findings.</p

    Genome-wide analysis reveals the extent of EAV-HP integration in domestic chicken

    Get PDF
    Background: EAV-HP is an ancient retrovirus pre-dating Gallus speciation, which continues to circulate in modern chicken populations, and led to the emergence of avian leukosis virus subgroup J causing significant economic losses to the poultry industry. We mapped EAV-HP integration sites in Ethiopian village chickens, a Silkie, Taiwan Country chicken, red junglefowl Gallusgallus and several inbred experimental lines using whole-genome sequence data. Results: An average of 75.22 ± 9.52 integration sites per bird were identified, which collectively group into 279 intervals of which 5% are common to 90% of the genomes analysed and are suggestive of pre-domestication integration events. More than a third of intervals are specific to individual genomes, supporting active circulation of EAV-HP in modern chickens. Interval density is correlated with chromosome length (P<2.31−6), and 27 % of intervals are located within 5 kb of a transcript. Functional annotation clustering of genes reveals enrichment for immune-related functions (P<0.05). Conclusions: Our results illustrate a non-random distribution of EAV-HP in the genome, emphasising the importance it may have played in the adaptation of the species, and provide a platform from which to extend investigations on the co-evolutionary significance of endogenous retroviral genera with their hosts

    Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya

    Get PDF
    The Mugling–Narayanghat road section falls within the Lesser Himalaya and Siwalik zones of Central Nepal Himalaya and is highly deformed by the presence of numerous faults and folds. Over the years, this road section and its surrounding area have experienced repeated landslide activities. For that reason, landslide susceptibility zonation is essential for roadside slope disaster management and for planning further development activities. The main goal of this study was to investigate the application of the frequency ratio (FR), statistical index (SI), and weights-of-evidence (WoE) approaches for landslide susceptibility mapping of this road section and its surrounding area. For this purpose, the input layers of the landslide conditioning factors were prepared in the first stage. A landslide inventory map was prepared using earlier reports, aerial photographs interpretation, and multiple field surveys. A total of 438 landslide locations were detected. Out these, 295 (67 %) landslides were randomly selected as training data for the modeling using FR, SI, and WoE models and the remaining 143 (33 %) were used for the validation purposes. The landslide conditioning factors considered for the study area are slope gradient, slope aspect, plan curvature, altitude, stream power index, topographic wetness index, lithology, land use, distance from faults, distance from rivers, and distance from highway. The results were validated using area under the curve (AUC) analysis. From the analysis, it is seen that the FR model with a success rate of 76.8 % and predictive accuracy of 75.4 % performs better than WoE (success rate, 75.6 %; predictive accuracy, 74.9 %) and SI (success rate, 75.5 %; predictive accuracy, 74.6 %) models. Overall, all the models showed almost similar results. The resultant susceptibility maps can be useful for general land use planning

    Natural Selection Affects Multiple Aspects of Genetic Variation at Putatively Neutral Sites across the Human Genome

    Get PDF
    A major question in evolutionary biology is how natural selection has shaped patterns of genetic variation across the human genome. Previous work has documented a reduction in genetic diversity in regions of the genome with low recombination rates. However, it is unclear whether other summaries of genetic variation, like allele frequencies, are also correlated with recombination rate and whether these correlations can be explained solely by negative selection against deleterious mutations or whether positive selection acting on favorable alleles is also required. Here we attempt to address these questions by analyzing three different genome-wide resequencing datasets from European individuals. We document several significant correlations between different genomic features. In particular, we find that average minor allele frequency and diversity are reduced in regions of low recombination and that human diversity, human-chimp divergence, and average minor allele frequency are reduced near genes. Population genetic simulations show that either positive natural selection acting on favorable mutations or negative natural selection acting against deleterious mutations can explain these correlations. However, models with strong positive selection on nonsynonymous mutations and little negative selection predict a stronger negative correlation between neutral diversity and nonsynonymous divergence than observed in the actual data, supporting the importance of negative, rather than positive, selection throughout the genome. Further, we show that the widespread presence of weakly deleterious alleles, rather than a small number of strongly positively selected mutations, is responsible for the correlation between neutral genetic diversity and recombination rate. This work suggests that natural selection has affected multiple aspects of linked neutral variation throughout the human genome and that positive selection is not required to explain these observations

    Myocardial tagging by Cardiovascular Magnetic Resonance: evolution of techniques--pulse sequences, analysis algorithms, and applications

    Get PDF
    Cardiovascular magnetic resonance (CMR) tagging has been established as an essential technique for measuring regional myocardial function. It allows quantification of local intramyocardial motion measures, e.g. strain and strain rate. The invention of CMR tagging came in the late eighties, where the technique allowed for the first time for visualizing transmural myocardial movement without having to implant physical markers. This new idea opened the door for a series of developments and improvements that continue up to the present time. Different tagging techniques are currently available that are more extensive, improved, and sophisticated than they were twenty years ago. Each of these techniques has different versions for improved resolution, signal-to-noise ratio (SNR), scan time, anatomical coverage, three-dimensional capability, and image quality. The tagging techniques covered in this article can be broadly divided into two main categories: 1) Basic techniques, which include magnetization saturation, spatial modulation of magnetization (SPAMM), delay alternating with nutations for tailored excitation (DANTE), and complementary SPAMM (CSPAMM); and 2) Advanced techniques, which include harmonic phase (HARP), displacement encoding with stimulated echoes (DENSE), and strain encoding (SENC). Although most of these techniques were developed by separate groups and evolved from different backgrounds, they are in fact closely related to each other, and they can be interpreted from more than one perspective. Some of these techniques even followed parallel paths of developments, as illustrated in the article. As each technique has its own advantages, some efforts have been made to combine different techniques together for improved image quality or composite information acquisition. In this review, different developments in pulse sequences and related image processing techniques are described along with the necessities that led to their invention, which makes this article easy to read and the covered techniques easy to follow. Major studies that applied CMR tagging for studying myocardial mechanics are also summarized. Finally, the current article includes a plethora of ideas and techniques with over 300 references that motivate the reader to think about the future of CMR tagging
    corecore