74 research outputs found

    Uterine selection of human embryos at implantation

    Get PDF
    Human embryos frequently harbor large-scale complex chromosomal errors that impede normal development. Affected embryos may fail to implant although many first breach the endometrial epithelium and embed in the decidualizing stroma before being rejected via mechanisms that are poorly understood. Here we show that developmentally impaired human embryos elicit an endoplasmic stress response in human decidual cells. A stress response was also evident upon in vivo exposure of mouse uteri to culture medium conditioned by low-quality human embryos. By contrast, signals emanating from developmentally competent embryos activated a focused gene network enriched in metabolic enzymes and implantation factors. We further show that trypsin, a serine protease released by pre-implantation embryos, elicits Ca2+ signaling in endometrial epithelial cells. Competent human embryos triggered short-lived oscillatory Ca2+ fluxes whereas low-quality embryos caused a heightened and prolonged Ca2+ response. Thus, distinct positive and negative mechanisms contribute to active selection of human embryos at implantation

    Hand-assisted retroperitoneoscopic versus standard laparoscopic donor nephrectomy: HARP-trial

    Get PDF
    Contains fulltext : 88436.pdf (publisher's version ) (Open Access)BACKGROUND: Transplantation is the only treatment offering long-term benefit to patients with chronic kidney failure. Live donor nephrectomy is performed on healthy individuals who do not receive direct therapeutic benefit of the procedure themselves. In order to guarantee the donor's safety, it is important to optimise the surgical approach. Recently we demonstrated the benefit of laparoscopic nephrectomy experienced by the donor. However, this method is characterised by higher in hospital costs, longer operating times and it requires a well-trained surgeon. The hand-assisted retroperitoneoscopic technique may be an alternative to a complete laparoscopic, transperitoneal approach. The peritoneum remains intact and the risk of visceral injuries is reduced. Hand-assistance results in a faster procedure and a significantly reduced operating time. The feasibility of this method has been demonstrated recently, but as to date there are no data available advocating the use of one technique above the other. METHODS/DESIGN: The HARP-trial is a multi-centre randomised controlled, single-blind trial. The study compares the hand-assisted retroperitoneoscopic approach with standard laparoscopic donor nephrectomy. The objective is to determine the best approach for live donor nephrectomy to optimise donor's safety and comfort while reducing donation related costs. DISCUSSION: This study will contribute to the evidence on any benefits of hand-assisted retroperitoneoscopic versus standard laparoscopic donor nephrectomy. TRIAL REGISTRATION: Dutch Trial Register NTR1433

    Self-organization of the human embryo in the absence of maternal tissues.

    Get PDF
    Remodelling of the human embryo at implantation is indispensable for successful pregnancy. Yet it has remained mysterious because of the experimental hurdles that beset the study of this developmental phase. Here, we establish an in vitro system to culture human embryos through implantation stages in the absence of maternal tissues and reveal the key events of early human morphogenesis. These include segregation of the pluripotent embryonic and extra-embryonic lineages, and morphogenetic rearrangements leading to generation of a bilaminar disc, formation of a pro-amniotic cavity within the embryonic lineage, appearance of the prospective yolk sac, and trophoblast differentiation. Using human embryos and human pluripotent stem cells, we show that the reorganization of the embryonic lineage is mediated by cellular polarization leading to cavity formation. Together, our results indicate that the critical remodelling events at this stage of human development are embryo-autonomous, highlighting the remarkable and unanticipated self-organizing properties of human embryos.This work was supported by the Wellcome Trust grant to M.Z- G. Work in Dr. K.K.N lab was supported by The Francis Crick Institute, which receives its core funding from Cancer Research UK, the Medical Research Council and the Wellcome Trust. Dr. M.N.S. was initially supported by a Ramon Areces Spanish Foundation Fellowship, and subsequently by an EMBO Postdoctoral Fellowship. Dr. S.V was supported by a Post Doc Pool Grant from the Finnish Cultural Foundation. Dr. GR was supported by a Newton Fellowship.This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by Nature Publishing Group
    corecore