69 research outputs found

    Weekly hours of informal caregiving and paid work, and the risk of cardiovascular disease

    Get PDF
    BACKGROUND: Little is known on the association between weekly hours of informal caregiving and risk of cardiovascular disease (CVD). The objective was to investigate the individual and joint effects of weekly hours of informal caregiving and paid work on the risk of CVD. METHODS: Pooled analysis with 1396 informal caregivers in gainful employment, from the Swedish Longitudinal Occupational Survey of Health and the Whitehall II study. Informal caregiving was defined as care for an aged or disabled relative. The outcome was CVD during 10 years follow-up. Analyzes were adjusted for age, sex, children, marital status and occupational grade. RESULTS: There were 59 cases of CVD. Providing care >20 h weekly were associated with a higher risk of CVD compared to those providing care 1-8 h weekly (hazard ratio = 2.63, 95%CI: 1.20; 5.76), irrespectively of weekly work hours. In sensitivity analyzes, we found this risk to be markedly higher among long-term caregivers (6.17, 95%CI: 1.73; 22.1) compared to short-term caregivers (0.89, 95%CI: 0.10; 8.08). Caregivers working ≥55 h weekly were at higher risk of CVD (2.23, 95%CI: 1.14; 4.35) compared to those working 35-40 h weekly. Those providing care >8 h and working ≤40 h weekly had a higher risk of CVD compared to those providing care 1-8 h and working ≤40 h (3.23, 95%CI: 1.25; 8.37). CONCLUSION: A high number of weekly hours of informal caregiving as opposed to few weekly hours is associated with a higher risk of CVD, irrespectively of weekly work hours. The excess risk seemed to be driven by those providing care over long periods of time

    Does weight loss improve semen quality and reproductive hormones? results from a cohort of severely obese men

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A high body mass index (BMI) has been associated with reduced semen quality and male subfecundity, but no studies following obese men losing weight have yet been published. We examined semen quality and reproductive hormones among morbidly obese men and studied if weight loss improved the reproductive indicators.</p> <p>Methods</p> <p>In this pilot cohort study, 43 men with BMI > 33 kg/m<sup>2 </sup>were followed through a 14 week residential weight loss program. The participants provided semen samples and had blood samples drawn, filled in questionnaires, and had clinical examinations before and after the intervention. Conventional semen characteristics as well as sperm DNA integrity, analysed by the sperm chromatin structure assay (SCSA) were obtained. Serum levels of testosterone, estradiol, sex hormone-binding globulin (SHBG), luteinizing hormone (LH), follicle-stimulating hormone (FSH), anti-MĂĽllerian hormone (AMH) and inhibin B (Inh-B) were measured.</p> <p>Results</p> <p>Participants were from 20 to 59 years of age (median = 32) with BMI ranging from 33 to 61 kg/m<sup>2</sup>. At baseline, after adjustment for potential confounders, BMI was inversely associated with sperm concentration (p = 0.02), total sperm count (p = 0.02), sperm morphology (p = 0.04), and motile sperm (p = 0.005) as well as testosterone (p = 0.04) and Inh-B (p = 0.04) and positively associated to estradiol (p < 0.005). The median (range) percentage weight loss after the intervention was 15% (3.5 - 25.4). Weight loss was associated with an increase in total sperm count (p = 0.02), semen volume (p = 0.04), testosterone (p = 0.02), SHBG (p = 0.03) and AMH (p = 0.02). The group with the largest weight loss had a statistically significant increase in total sperm count [193 millions (95% CI: 45; 341)] and normal sperm morphology [4% (95% CI: 1; 7)].</p> <p>Conclusion</p> <p>This study found obesity to be associated with poor semen quality and altered reproductive hormonal profile. Weight loss may potentially lead to improvement in semen quality. Whether the improvement is a result of the reduction in body weight per se or improved lifestyles remains unknown.</p

    Informal caregiving as a risk factor for type 2 diabetes in individuals with favourable and unfavourable psychosocial work environments: A longitudinal multi-cohort study

    Get PDF
    AIM: To examine whether informal caregiving is associated with increased risk of type 2 diabetes (T2D), and whether job strain and social support at work modify the association. METHODS: Individual participant's data were pooled from three cohort studies-the French GAZEL study, the Swedish Longitudinal Occupational Survey of Health (SLOSH) and the British Whitehall II study-a total of 21,243 study subjects. Informal caregiving was defined as unpaid care for a closely related person. Job strain was assessed using the demand-control model, and questions on co-worker and supervisor support were combined in a measure of social support at work. Incident T2D was ascertained using registry-based, clinically assessed and self-reported data. RESULTS: A total of 1058 participants developed T2D during the up to 10 years of follow-up. Neither informal caregiving (OR: 1.09, 95% CI: 0.92-1.30) nor high job strain (OR: 1.04, 95% CI: 0.86-1.26) were associated with T2D risk, whereas low social support at work was a risk factor for T2D (OR: 1.18, 95% CI: 1.02-1.37). Also, informal caregivers who were also exposed to low social support at work were at higher risk of T2D (OR: 1.40, 95% CI: 1.08-1.82) compared with those who were not informal caregivers and had high social support at work (multiplicative test for interaction, P=0.04; additive test for interaction, synergy index=10). CONCLUSION: Informal caregiving was not independently associated with T2D risk. However, low social support at work was a risk factor, and informal caregivers with low social support at work had even higher risks of T2D

    Improving metabolic health in obese male mice via diet and exercise restores embryo development and fetal growth

    Get PDF
    Paternal obesity is now clearly associated with or causal of impaired embryo and fetal development and reduced pregnancy rates in humans and rodents. This appears to be a result of reduced blastocyst potential. Whether these adverse embryo and fetal outcomes can be ameliorated by interventions to reduce paternal obesity has not been established. Here, male mice fed a high fat diet (HFD) to induce obesity were used, to determine if early embryo and fetal development is improved by interventions of diet (CD) and/or exercise to reduce adiposity and improve metabolism. Exercise and to a lesser extent CD in obese males improved embryo development rates, with increased cell to cell contacts in the compacting embryo measured by E-cadherin in exercise interventions and subsequently, increased blastocyst trophectoderm (TE), inner cell mass (ICM) and epiblast cell numbers. Implantation rates and fetal development from resulting blastocysts were also improved by exercise in obese males. Additionally, all interventions to obese males increased fetal weight, with CD alone and exercise alone, also increasing fetal crown-rump length. Measures of embryo and fetal development correlated with paternal measures of glycaemia, insulin action and serum lipids regardless of paternal adiposity or intervention, suggesting a link between paternal metabolic health and subsequent embryo and fetal development. This is the first study to show that improvements to metabolic health of obese males through diet and exercise can improve embryo and fetal development, suggesting such interventions are likely to improve offspring health.Nicole O. McPherson, Hassan W. Bakos, Julie A. Owens, Brian P. Setchell, Michelle Lan

    Analysis of DNA methylation at birth and in childhood reveals changes associated with season of birth and latitude

    Get PDF
    This is the final version. Available from BMC via the DOI in this record. Individual cohort-level data can be obtained from the respective cohort (see Additional file 1: Table S1 and Additional file 2 for cohort details).BACKGROUND: Seasonal variations in environmental exposures at birth or during gestation are associated with numerous adult traits and health outcomes later in life. Whether DNA methylation (DNAm) plays a role in the molecular mechanisms underlying the associations between birth season and lifelong phenotypes remains unclear. METHODS: We carried out epigenome-wide meta-analyses within the Pregnancy And Childhood Epigenetic Consortium to identify associations of DNAm with birth season, both at differentially methylated probes (DMPs) and regions (DMRs). Associations were examined at two time points: at birth (21 cohorts, N = 9358) and in children aged 1-11 years (12 cohorts, N = 3610). We conducted meta-analyses to assess the impact of latitude on birth season-specific associations at both time points. RESULTS: We identified associations between birth season and DNAm (False Discovery Rate-adjusted p values < 0.05) at two CpGs at birth (winter-born) and four in the childhood (summer-born) analyses when compared to children born in autumn. Furthermore, we identified twenty-six differentially methylated regions (DMR) at birth (winter-born: 8, spring-born: 15, summer-born: 3) and thirty-two in childhood (winter-born: 12, spring and summer: 10 each) meta-analyses with few overlapping DMRs between the birth seasons or the two time points. The DMRs were associated with genes of known functions in tumorigenesis, psychiatric/neurological disorders, inflammation, or immunity, amongst others. Latitude-stratified meta-analyses [higher (≥ 50°N), lower (< 50°N, northern hemisphere only)] revealed differences in associations between birth season and DNAm by birth latitude. DMR analysis implicated genes with previously reported links to schizophrenia (LAX1), skin disorders (PSORS1C, LTB4R), and airway inflammation including asthma (LTB4R), present only at birth in the higher latitudes (≥ 50°N). CONCLUSIONS: In this large epigenome-wide meta-analysis study, we provide evidence for (i) associations between DNAm and season of birth that are unique for the seasons of the year (temporal effect) and (ii) latitude-dependent variations in the seasonal associations (spatial effect). DNAm could play a role in the molecular mechanisms underlying the effect of birth season on adult health outcomes.Wellcome TrustBiotechnology and Biological Sciences Research Council (BBSRC)Biotechnology and Biological Sciences Research Council (BBSRC)European Union’s Horizon 2020Economic and Social Research Council (ESRC)Medical Research Council (MRC)Medical Research Council (MRC)European UnionSwedish foundation for strategic research (SSF)National Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)Environmental Protection Agency (EPA)National Cancer Institute Cancer CenterNational Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)Environmental Protection Agency (EPA)Environmental Protection Agency (EPA)European UnionEuropean UnionEuropean UnionEuropean UnionEuropean Union’s Horizon 2020European Research Council (ERC)German Ministry of Education and ResearchNational Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)Autism SpeaksNational Institutes of Health (NIH)National Institutes of Health (NIH)European UnionEuropean UnionEuropean UnionEuropean UnionEuropean UnionEuropean UnionEuropean UnionEuropean UnionEuropean UnionEuropean Research Council (ERC)Flemisch Scientific Research CouncilFlemisch Scientific Research CouncilFlemisch Scientific Research CouncilEuropean UnionFonds de recherche du Québec - Santé (FRQS)Canadian Institute of Health Research (CIHR)Canadian Institute of Health Research (CIHR)Netherlands Organisation for Scientific Research (NWO)National Institute of Child and Human DevelopmentEuropean Union’s Horizon 2020European Union’s Horizon 2020European Union’s Horizon 2020ZonMwZonMwMedical Research Council Integrative Epidemiology Unit (University of Bristol)Netherlands Heart FoundationNetherlands Heart FoundationNetherlands Organisation for Scientific Research (NWO)European UnionNational Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)Spanish Ministry of ScienceNational Institute for Health and Care Research (NIHR)Wellcome TrustNorwegian Ministry of Health and the Ministry of Education and ResearchNorwegian Ministry of Health and the Ministry of Education and ResearchNorwegian Ministry of Health and the Ministry of Education and ResearchLithuanian Agency for Science Innovation and TechnologySpanish Ministry of HealthSpanish Ministry of HealthSpanish Ministry of HealthSpanish Ministry of HealthSpanish Ministry of HealthInstituto de Salud Carlos IIIInstituto de Salud Carlos IIIEuropean Research Council (ERC)CDMRP/Department of DefenseNIGMSNational Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)National Asthma Campaign, UKNational Institutes of Health (NIH)Medical Research Council (MRC)National Institutes of Health (NIH)Norwegian Research CouncilNational Institute of Environmental Health SciencesResearch Council of NorwayNational Institute of Environmental Health SciencesNational Institute of Environmental Health SciencesNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institute of Environmental Health SciencesNational Institute of Environmental Health SciencesSwedish Research CouncilSwedish Initiative for research on Microdata in the Social And Medical Sciences (SIMSAM)National Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)Medical Research Council Integrative Epidemiology Unit (University of Bristol)Medical Research Council Integrative Epidemiology Unit (University of Bristol)Medical Research Council Integrative Epidemiology Unit (University of Bristol)Swedish Heart-Lung FoundationUniversity of MunichFoundation for Medical Research (FRM)National Agency for ResearchNational Institute for Research in Public HealthFrench Ministry of HealthFrench Ministry of ResearchInserm Bone and Joint Diseases National Research (PRO-A) and Human Nutrition National Research ProgramsParis–Sud UniversityNestléFrench National Institute for Population Health SurveillanceFrench National Institute for Health EducationFrench Agency for Environmental Health SafetyMutuelle Générale de l’Education NationaleFrench National Agency for Food SecurityFrench-speaking association for the study of diabetes and metabolismItalian National Centre for Disease Prevention and ControlItalian Ministry of HealthGreek Ministry of HealthFlemish Government (Department of Economy, Science and Innovations, Agency for Care and Health and Department of Environment)The Research Foundation-FlandersFlemish Institute for Technological ResearchDiabète QuébecErasmus University RotterdamNetherlands Organization for Health Research and Development and the Ministry of Health, Welfare and SportErasmus MCDanish National Research FoundationDanish Regional CommitteesNovo Nordisk FoundationLundbeck FoundationHelmholtz Center for Environmental ResearchGerman Cancer Research CentreAcademy of FinlandEraNetEVOUniversity of Helsinki Research FundsSigne and Ane Gyllenberg foundationEmil Aaltonen FoundationFinnish Medical FoundationJane and Aatos Erkko FoundationJuho Vainio foundationYrjö Jahnsson foundationJalmari and Rauha Ahokas foundationPaivikki and Sakari Sohlberg FoundationSigrid Juselius FoundationSir Jules Thorn Charitable TrustSwedish Asthma and Allergy Association's Research FoundationStiftelsen Frimurare Barnhuset Stockhol

    Obesity and age at menarche

    Full text link
    A cohort study of 3,169 girls born in April 1984-April 1987 in Odense and Aalborg, Denmark, was performed to examine whether maternal prepregnancy body mass index (BMI) accounted for daughter's age of menarche (AOM) and, if so, whether it accounted for part or all of the association between daughter's BMI and AOM. Multiple regression analyses adjusted for covariates indicated a weak inverse association between maternal BMI and AOM and a much stronger inverse association between offspring BMI and AOM independent of maternal BMI. © 2011 by American Society for Reproductive Medicine

    Association between coffee or caffeine consumption and fecundity and fertility: a systematic review and dose&ndash;response meta-analysis

    No full text
    Julie Lyngs&oslash;,1 Cecilia H&oslash;st Ramlau-Hansen,1 Bj&oslash;rn Bay,2 Hans Jakob Ingerslev,3 Adam Hulman,1,4 Ulrik Schi&oslash;ler Kesmodel5 1Department of Public Health, Section for Epidemiology, Aarhus University, Aarhus, 2The Fertility Clinic, Regional Horsens Hospital, Horsens, 3Department of Obstetrics and Gynaecology, Aarhus University Hospital, Aarhus, 4Danish Diabetes Academy, Odense, 5Department of Obstetrics and Gynaecology, Herlev and Gentofte Hospital, Herlev, Denmark Objective: The aim was to investigate whether coffee or caffeine consumption is associated with reproductive endpoints among women with natural fertility (ie, time to pregnancy [TTP] and spontaneous abortion [SAB]) and among women in fertility treatment (ie, clinical pregnancy rate or live birth rate). Design: This study was a systematic review and dose&ndash;response meta-analysis including data from case&ndash;control and cohort studies. Methods: An extensive literature search was conducted in MEDLINE and Embase, with no time and language restrictions. Also, reference lists were searched manually. Two independent reviewers assessed the manuscript quality using the Newcastle&ndash;Ottawa Scale (NOS). A two-stage dose&ndash;response meta-analysis was applied to assess a potential association between coffee/caffeine consumption and the outcomes: TTP, SAB, clinical pregnancy, and live birth. Heterogeneity between studies was assessed using Cochrane Q-test and I2 statistics. Publication bias was assessed using Egger&rsquo;s regression test. Results: The pooled results showed that coffee/caffeine consumption is associated with a significantly increased risk of SAB for 300 mg caffeine/day (relative risk [RR]: 1.37, 95% confidence interval [95% CI]: 1.19; 1.57) and for 600 mg caffeine/day (RR: 2.32, 95% CI: 1.62; 3.31). No association was found between coffee/caffeine consumption and outcomes of fertility treatment (based on two studies). No clear association was found between exposure to coffee/caffeine and natural fertility as measured by fecundability odds ratio (based on three studies) or waiting TTP (based on two studies). Conclusion: Results from this meta-analysis support the growing evidence of an association between coffee/caffeine intake and the risk of SAB. However, viewing the reproductive capacity in a broader perspective, there seems to be little, if any, association between coffee/caffeine consumption and fecundity. In general, results from this study are supportive of a precautionary principle advised by health organizations such as European Food Safety Authority (EFSA) and World Health Organization (WHO), although the advised limit of a maximum of two to three cups of coffee/200&ndash;300 mg caffeine per day may be too high. Keywords: coffee, caffeine, fecundity, fertility, spontaneous abortion, assisted reproductio
    • …
    corecore