121 research outputs found
Consensus for genes to be included on cancer panel tests offered by UK genetics services: guidelines of the UK Cancer Genetics Group.
Genetic testing for hereditary cancer predisposition has evolved rapidly in recent years with the discovery of new genes, but there is much debate over the clinical utility of testing genes for which there are currently limited data regarding the degree of associated cancer risk. To address the discrepancies that have arisen in the provision of these tests across the UK, the UK Cancer Genetics Group facilitated a 1-day workshop with representation from the majority of National Health Service (NHS) clinical genetics services. Using a preworkshop survey followed by focused discussion of genes without prior majority agreement for inclusion, we achieved consensus for panels of cancer genes with sufficient evidence for clinical utility, to be adopted by all NHS genetics services. To support consistency in the delivery of these tests and advice given to families across the country, we also developed management proposals for individuals who are found to have pathogenic mutations in these genes. However, we fully acknowledge that the decision regarding what test is most appropriate for an individual family rests with the clinician, and will depend on factors including specific phenotypic features and the family structure
Recommended from our members
Molecular composition of organic aerosols in central Amazonia: An ultra-high-resolution mass spectrometry study
The Amazon Basin plays key role in atmospheric chemistry, biodiversity and climate change. In this study we applied nanoelectrospray (nanoESI) ultra-high-resolution mass spectrometry (UHRMS) for the analysis of the organic fraction of PM aerosol samples collected during dry and wet seasons at a site in central Amazonia receiving background air masses, biomass burning and urban pollution. Comprehensive mass spectral data evaluation methods (e.g. Kendrick mass defect, Van Krevelen diagrams, carbon oxidation state and aromaticity equivalent) were used to identify compound classes and mass distributions of the detected species. Nitrogen-and/or sulfur-containing organic species contributed up to 60% of the total identified number of formulae. A large number of molecular formulae in organic aerosol (OA) were attributed to later-generation nitrogen-and sulfur-containing oxidation products, suggesting that OA composition is affected by biomass burning and other, potentially anthropogenic, sources. Isoprene-derived organosulfate (IEPOX-OS) was found to be the most dominant ion in most of the analysed samples and strongly followed the concentration trends of the gas-phase anthropogenic tracers confirming its mixed anthropogenic-biogenic origin. The presence of oxidised aromatic and nitro-aromatic compounds in the samples suggested a strong influence from biomass burning especially during the dry period. Aerosol samples from the dry period and under enhanced biomass burning conditions contained a large number of molecules with high carbon oxidation state and an increased number of aromatic compounds compared to that from the wet period. The results of this work demonstrate that the studied site is influenced not only by biogenic emissions from the forest but also by biomass burning and potentially other anthropogenic emissions from the neighbouring urban environments.Research at the University of Cambridge was supported by European Research Council grant no. 279405. The authors would like to thank Jason Surratt (University of North Carolina) for providing a synthesised IEPOX-OS standard. O3, CO, NOy , RH and rain data were obtained from the Atmospheric Radiation Measurement (ARM) Climate Research Facility, a U.S. Department of Energy (grant DE-SC0011122) Office of Science user facility sponsored by the Office of Biological and Environmental Research. We acknowledge the support from the Central Office of the Large Scale Biosphere Atmosphere Experiment in Amazonia (LBA), the Instituto Nacional de Pesquisas da Amazonia (INPA), and the Universidade do Estado do Amazonia (UEA). The work was conducted under 001030/2012-4 of the Brazilian National Council for Scientific and Technological Development (CNPq)
Recommended from our members
Molecular composition of organic aerosols in central Amazonia: An ultra-high-resolution mass spectrometry study
The Amazon Basin plays key role in atmospheric chemistry, biodiversity and climate change. In this study we applied nanoelectrospray (nanoESI) ultra-high-resolution mass spectrometry (UHRMS) for the analysis of the organic fraction of PM aerosol samples collected during dry and wet seasons at a site in central Amazonia receiving background air masses, biomass burning and urban pollution. Comprehensive mass spectral data evaluation methods (e.g. Kendrick mass defect, Van Krevelen diagrams, carbon oxidation state and aromaticity equivalent) were used to identify compound classes and mass distributions of the detected species. Nitrogen-and/or sulfur-containing organic species contributed up to 60% of the total identified number of formulae. A large number of molecular formulae in organic aerosol (OA) were attributed to later-generation nitrogen-and sulfur-containing oxidation products, suggesting that OA composition is affected by biomass burning and other, potentially anthropogenic, sources. Isoprene-derived organosulfate (IEPOX-OS) was found to be the most dominant ion in most of the analysed samples and strongly followed the concentration trends of the gas-phase anthropogenic tracers confirming its mixed anthropogenic-biogenic origin. The presence of oxidised aromatic and nitro-aromatic compounds in the samples suggested a strong influence from biomass burning especially during the dry period. Aerosol samples from the dry period and under enhanced biomass burning conditions contained a large number of molecules with high carbon oxidation state and an increased number of aromatic compounds compared to that from the wet period. The results of this work demonstrate that the studied site is influenced not only by biogenic emissions from the forest but also by biomass burning and potentially other anthropogenic emissions from the neighbouring urban environments.Research at the University of Cambridge was supported by European Research Council grant no. 279405. The authors would like to thank Jason Surratt (University of North Carolina) for providing a synthesised IEPOX-OS standard. O3, CO, NOy , RH and rain data were obtained from the Atmospheric Radiation Measurement (ARM) Climate Research Facility, a U.S. Department of Energy (grant DE-SC0011122) Office of Science user facility sponsored by the Office of Biological and Environmental Research. We acknowledge the support from the Central Office of the Large Scale Biosphere Atmosphere Experiment in Amazonia (LBA), the Instituto Nacional de Pesquisas da Amazonia (INPA), and the Universidade do Estado do Amazonia (UEA). The work was conducted under 001030/2012-4 of the Brazilian National Council for Scientific and Technological Development (CNPq)
Systematic misperceptions: cigarette variant names signal (reduced) harm amongst young adults
Introduction Cigarette brand variant names remain a key marketing tool despite restrictions under Article 13 of the EU Tobacco Products Directive. This study investigates whether variant names of popular cigarette brands evoke associations that violate the Directive's prohibitions on harm and flavour-related claims in the Netherlands Methods 1,354 participants (younger adult and adult daily smokers, younger adult non-daily smokers, and younger adult non-smokers) offered unprompted and prompted associations with 10 variants from three major brands to explore perceptions of harm and taste. Qualitative responses were coded and analysed, and quantitative comparisons assessed differences across variant types. Results Variant names referring to former ‘mild’ variant names (e.g., “Gold”, “Blue") were perceived as less harmful than full-flavour variants (e.g., “Red"). Variant names referring to former ‘menthol’ variants (e.g., “Green”, “Alpine") elicited strong associations with menthol flavour, particularly among younger participants. Findings indicate systematic misperceptions about harm and flavour, contrary to regulatory intent. Conclusions This study highlights the continued influence of brand variant names on consumer perceptions, particularly among young smokers and non-smokers. Subtle linguistic and colour cues in variant names were found to reinforce these perceptions, undermining efforts to convey the universal harms of smoking. Policymakers could consider stricter regulation, such as mandating neutral numerical naming systems, to mitigate misleading associations and further reduce product appeal. Strengthened oversight can further align tobacco control policies with public health goals, advancing efforts to prevent smoking initiation and achieve a smoke-free generation. Key messages • Colour-cued variant names create predictable harm and flavour associations, particularly amongst young adults and non-smokers. • Young adult smokers more often smoke low tar and menthol variants
Longitudinal evaluation of dementia care in German nursing homes: the “DemenzMonitor” study protocol
Modelo para avaliação de planos de gerenciamento de resíduos de serviços de saúde (PGRSS) para Secretarias Municipais da Saúde e/ou do Meio Ambiente
Avaliação do número de células caliciformes nas criptas da mucosa colônica com e sem trânsito intestinal
Salt stress affects mRNA editing in soybean chloroplasts
Abstract Soybean, a crop known by its economic and nutritional importance, has been the subject of several studies that assess the impact and the effective plant responses to abiotic stresses. Salt stress is one of the main environmental stresses and negatively impacts crop growth and yield. In this work, the RNA editing process in the chloroplast of soybean plants was evaluated in response to a salt stress. Bioinformatics approach using sRNA and mRNA libraries were employed to detect specific sites showing differences in editing efficiency. RT-qPCR was used to measure editing efficiency at selected sites. We observed that transcripts of NDHA, NDHB, RPS14 and RPS16 genes presented differences in coverage and editing rates between control and salt-treated libraries. RT-qPCR assays demonstrated an increase in editing efficiency of selected genes. The salt stress enhanced the RNA editing process in transcripts, indicating responses to components of the electron transfer chain, photosystem and translation complexes. These increases can be a response to keep the homeostasis of chloroplast protein functions in response to salt stress
Tissue content of sulfomucins and sialomucins in the colonic mucosa, without fecal stream, undergoing daily intervention with sucralfate
Efficacy and safety of atypical antipsychotic drugs (quetiapine, risperidone, aripiprazole and paliperidone) compared with placebo or typical antipsychotic drugs for treating refractory schizophrenia: overview of systematic reviews
- …
