56 research outputs found

    Positive psychology of Malaysian students: impacts of engagement, motivation, self-compassion and wellbeing on mental health

    Get PDF
    Malaysia plays a key role in education of the Asia Pacific, expanding its scholarly output rapidly. However, mental health of Malaysian students is challenging, and their help-seeking is low because of stigma. This study explored the relationships between mental health and positive psychological constructs (academic engagement, motivation, self-compassion, and wellbeing), and evaluated the relative contribution of each positive psychological construct to mental health in Malaysian students. An opportunity sample of 153 students completed the measures regarding these constructs. Correlation, regression, and mediation analyses were conducted. Engagement, amotivation, self-compassion, and wellbeing were associated with, and predicted large variance in mental health. Self-compassion was the strongest independent predictor of mental health among all the positive psychological constructs. Findings can imply the strong links between mental health and positive psychology, especially selfcompassion. Moreover, intervention studies to examine the effects of self-compassion training on mental health of Malaysian students appear to be warranted.N/

    A phase-I trial of pre-operative, margin intensive, stereotactic body radiation therapy for pancreatic cancer: the 'SPARC' trial protocol.

    Get PDF
    BACKGROUND: Standard therapy for borderline-resectable pancreatic cancer in the UK is surgery with adjuvant chemotherapy, but rates of resection with clear margins are unsatisfactory and overall survival remains poor. Meta-analysis of single-arm studies shows the potential of neo-adjuvant chemo-radiotherapy but the relative radio-resistance of pancreatic cancer means the efficacy of conventional dose schedules is limited. Stereotactic radiotherapy achieves sufficient accuracy and precision to enable pre-operative margin-intensive dose escalation with the goal of increasing rates of clear resection margins and local disease control. METHODS/DESIGN: SPARC is a "rolling-six" design single-arm study to establish the maximum tolerated dose for margin-intensive stereotactic radiotherapy before resection of pancreatic cancer at high risk of positive resection margins. Eligible patients will have histologically or cytologically proven pancreatic cancer defined as borderline-resectable per National Comprehensive Cancer Network criteria or operable tumour in contact with vessels increasing the risk of positive margin. Up to 24 patients will be recruited from up to 5 treating centres and a 'rolling-six' design is utilised to minimise delays and facilitate ongoing recruitment during dose-escalation. Radiotherapy will be delivered in 5 daily fractions and surgery, if appropriate, will take place 5-6 weeks after radiotherapy. The margin-intense radiotherapy concept includes a systematic method to define the target volume for a simultaneous integrated boost in the region of tumour-vessel infiltration, and up to 4 radiotherapy dose levels will be investigated. Maximum tolerated dose is defined as the highest dose at which no more than 1 of 6 patients or 0 of 3 patients experience a dose limiting toxicity. Secondary endpoints include resection rate, resection margin status, response rate, overall survival and progression free survival at 12 and 24 months. Translational work will involve exploratory analyses of the cytological and humoral immunological responses to stereotactic radiotherapy in pancreatic cancer. Radiotherapy quality assurance of target definition and radiotherapy planning is enforced with pre-trial test cases and on-trial review. Recruitment began in April 2015. DISCUSSION: This prospective multi-centre study aims to establish the maximum tolerated dose of pre-operative margin-intensified stereotactic radiotherapy in pancreatic cancer at high risk of positive resection margins with a view to subsequent definitive comparison with other neoadjuvant treatment options

    Variants in Neuropeptide Y Receptor 1 and 5 Are Associated with Nutrient-Specific Food Intake and Are Under Recent Selection in Europeans

    Get PDF
    There is a large variation in caloric intake and macronutrient preference between individuals and between ethnic groups, and these food intake patterns show a strong heritability. The transition to new food sources during the agriculture revolution around 11,000 years ago probably created selective pressure and shaped the genome of modern humans. One major player in energy homeostasis is the appetite-stimulating hormone neuropeptide Y, in which the stimulatory capacity may be mediated by the neuropeptide Y receptors 1, 2 and 5 (NPY1R, NPY2R and NPY5R). We assess association between variants in the NPY1R, NPY2R and NPY5R genes and nutrient intake in a cross-sectional, single-center study of 400 men aged 40 to 80 years, and we examine whether genomic regions containing these genes show signatures of recent selection in 270 HapMap individuals (90 Africans, 90 Asians, and 90 Caucasians) and in 846 Dutch bloodbank controls. Our results show that derived alleles in NPY1R and NPY5R are associated with lower carbohydrate intake, mainly because of a lower consumption of mono- and disaccharides. We also show that carriers of these derived alleles, on average, consume meals with a lower glycemic index and glycemic load and have higher alcohol consumption. One of these variants shows the hallmark of recent selection in Europe. Our data suggest that lower carbohydrate intake, consuming meals with a low glycemic index and glycemic load, and/or higher alcohol consumption, gave a survival advantage in Europeans since the agricultural revolution. This advantage could lie in overall health benefits, because lower carbohydrate intake, consuming meals with a low GI and GL, and/or higher alcohol consumption, are known to be associated with a lower risk of chronic diseases

    Endothelial dysfunction and diabetes: roles of hyperglycemia, impaired insulin signaling and obesity

    Get PDF

    Combined numerical and experimental biomechanical characterization of soft collagen hydrogel substrate.

    Get PDF
    This work presents a combined experimental-numerical framework for the biomechanical characterization of highly hydrated collagen hydrogels, namely with 0.20, 0.30 and 0.40 % (by weight) of collagen concentration. Collagen is the most abundant protein in the extracellular matrix of animals and humans. Its intrinsic biocompatibility makes collagen a promising substrate for embedding cells within a highly hydrated environment mimicking natural soft tissues. Cell behaviour is greatly influenced by the mechanical properties of the surrounding matrix, but the biomechanical characterization of collagen hydrogels has been challenging up to now, since they present non-linear poro-viscoelastic properties. Combining the stiffness outcomes from rheological experiments with relevant literature data on collagen permeability, poroelastic finite element (FE) models were developed. Comparison between experimental confined compression tests available in the literature and analogous FE stress relaxation curves showed a close agreement throughout the tests. This framework allowed establishing that the dynamic shear modulus of the collagen hydrogels is between 0.0097 ± 0.018 kPa for the 0.20 % concentration and 0.0601 ± 0.044 kPa for the 0.40 % concentration. The Poisson's ratio values for such conditions lie within the range of 0.495-0.485 for 0.20 % and 0.480-0.470 for 0.40 %, respectively, showing that rheology is sensitive enough to detect these small changes in collagen concentration and thus allowing to link rheology results with the confined compression tests. In conclusion, this integrated approach allows for accurate constitutive modelling of collagen hydrogels. This framework sets the grounds for the characterization of related hydrogels and to the use of this collagen parameterization in more complex multiscale models
    corecore