54 research outputs found

    Development of low blood glucose readings in nine non-diabetic patients treated with tumor necrosis factor-alpha inhibitors: a case series

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Treatment with various biological agents in disease states such as rheumatoid arthritis has been associated with multiple side effects. Whereas many of these are frequently reported in the literature, hypoglycemia, a possible side effect of tumor necrosis factor-alpha inhibitors, may be underpublicized.</p> <p>Case presentation</p> <p>We report nine cases of non-diabetic Caucasian women who were between 29 and 68 years of age and who developed low glucose readings after treatment with tumor necrosis factor-alpha inhibitors. We provide a more detailed discussion of existing evidence of the role of tumor necrosis factor-alpha in the pathogenesis of inflammation and its impact on glycemic equilibrium.</p> <p>Conclusions</p> <p>Physicians using tumor necrosis factor-alpha inhibitors in the treatment of various rheumatic and other autoimmune diseases should be aware of the potential for the development of glycemic disturbance in these patients. A further role of tumor necrosis factor-alpha inhibitors in the glycemic equilibrium warrants larger controlled trials in patients with and those without a history of diabetes.</p

    Tear fluid biomarkers in ocular and systemic disease: potential use for predictive, preventive and personalised medicine

    Get PDF
    In the field of predictive, preventive and personalised medicine, researchers are keen to identify novel and reliable ways to predict and diagnose disease, as well as to monitor patient response to therapeutic agents. In the last decade alone, the sensitivity of profiling technologies has undergone huge improvements in detection sensitivity, thus allowing quantification of minute samples, for example body fluids that were previously difficult to assay. As a consequence, there has been a huge increase in tear fluid investigation, predominantly in the field of ocular surface disease. As tears are a more accessible and less complex body fluid (than serum or plasma) and sampling is much less invasive, research is starting to focus on how disease processes affect the proteomic, lipidomic and metabolomic composition of the tear film. By determining compositional changes to tear profiles, crucial pathways in disease progression may be identified, allowing for more predictive and personalised therapy of the individual. This article will provide an overview of the various putative tear fluid biomarkers that have been identified to date, ranging from ocular surface disease and retinopathies to cancer and multiple sclerosis. Putative tear fluid biomarkers of ocular disorders, as well as the more recent field of systemic disease biomarkers, will be shown

    Functional and Structural Characteristics of Tumor Angiogenesis in Lung Cancers Overexpressing Different VEGF Isoforms Assessed by DCE- and SSCE-MRI

    Get PDF
    The expressions of different vascular endothelial growth factor (VEGF) isoforms are associated with the degree of tumor invasiveness and the patient's prognosis in human cancers. We hypothesized that different VEGF isoforms can exert different effects on the functional and structural characteristics of tumor angiogenesis. We used dynamic contrast-enhanced MRI (DCE-MRI) and steady-state contrast-enhanced MRI (SSCE-MRI) to evaluate in vivo vascular functions (e.g., perfusion and permeability) and structural characteristics (e.g., vascular size and vessel density) of the tumor angiogenesis induced by different VEGF isoforms (VEGF121, VEGF165, and VEGF189) in a murine xenograft model of human lung cancer. Tumors overexpressing VEGF189 were larger than those overexpressing the other two VEGF isoforms. The Ktrans map obtained from DCE-MRI revealed that the perfusion and permeability functions of tumor microvessels was highest in both the rim and core regions of VEGF189-overexpressing tumors (p<0.001 for both tumor rim and core). The relative vessel density and relative vessel size indexes derived from SSCE-MRI revealed that VEGF189-overexpressing tumors had the smallest (p<0.05) and the most-dense (p<0.01) microvessels, which penetrated deeply from the tumor rim into the core, followed by the VEGF165-overepxressing tumor, whose microvessels were located mainly in the tumor rim. The lowest-density microvessels were found in the VEGF121-overexpressing tumor; these microvessels had a relatively large lumen and were found mainly in the tumor rim. We conclude that among the three VEGF isoforms evaluated, VEGF189 induces the most densely sprouting and smallest tumor microvessels with the highest in vivo perfusion and permeability functions. These characteristics of tumor microvessels may contribute to the reported adverse effects of VEGF189 overexpression on tumor progression, metastasis, and patient survival in several human cancers, including non-small cell lung cancer, and suggest that applying aggressive therapy may be necessary in human cancers in which VEGF189 is overexpressed

    Diverse Splicing Patterns of Exonized Alu Elements in Human Tissues

    Get PDF
    Exonization of Alu elements is a major mechanism for birth of new exons in primate genomes. Prior analyses of expressed sequence tags show that almost all Alu-derived exons are alternatively spliced, and the vast majority of these exons have low transcript inclusion levels. In this work, we provide genomic and experimental evidence for diverse splicing patterns of exonized Alu elements in human tissues. Using Exon array data of 330 Alu-derived exons in 11 human tissues and detailed RT-PCR analyses of 38 exons, we show that some Alu-derived exons are constitutively spliced in a broad range of human tissues, and some display strong tissue-specific switch in their transcript inclusion levels. Most of such exons are derived from ancient Alu elements in the genome. In SEPN1, mutations of which are linked to a form of congenital muscular dystrophy, the muscle-specific inclusion of an Alu-derived exon may be important for regulating SEPN1 activity in muscle. Realtime qPCR analysis of this SEPN1 exon in macaque and chimpanzee tissues indicates human-specific increase in its transcript inclusion level and muscle specificity after the divergence of humans and chimpanzees. Our results imply that some Alu exonization events may have acquired adaptive benefits during the evolution of primate transcriptomes

    Evolution of Alternative Splicing Regulation: Changes in Predicted Exonic Splicing Regulators Are Not Associated with Changes in Alternative Splicing Levels in Primates

    Get PDF
    Alternative splicing is tightly regulated in a spatio-temporal and quantitative manner. This regulation is achieved by a complex interplay between spliceosomal (trans) factors that bind to different sequence (cis) elements. cis-elements reside in both introns and exons and may either enhance or silence splicing. Differential combinations of cis-elements allows for a huge diversity of overall splicing signals, together comprising a complex ‘splicing code’. Many cis-elements have been identified, and their effects on exon inclusion levels demonstrated in reporter systems. However, the impact of interspecific differences in these elements on the evolution of alternative splicing levels has not yet been investigated at genomic level. Here we study the effect of interspecific differences in predicted exonic splicing regulators (ESRs) on exon inclusion levels in human and chimpanzee. For this purpose, we compiled and studied comprehensive datasets of predicted ESRs, identified by several computational and experimental approaches, as well as microarray data for changes in alternative splicing levels between human and chimpanzee. Surprisingly, we found no association between changes in predicted ESRs and changes in alternative splicing levels. This observation holds across different ESR exon positions, exon lengths, and 5′ splice site strengths. We suggest that this lack of association is mainly due to the great importance of context for ESR functionality: many ESR-like motifs in primates may have little or no effect on splicing, and thus interspecific changes at short-time scales may primarily occur in these effectively neutral ESRs. These results underscore the difficulties of using current computational ESR prediction algorithms to identify truly functionally important motifs, and provide a cautionary tale for studies of the effect of SNPs on splicing in human disease

    Preference for facial averageness: evidence for a common mechanism in human and macaque infants

    Get PDF
    Human adults and infants show a preference for average faces, which could stem from a general processing mechanism and may be shared among primates. However, little is known about preference for facial averageness in monkeys. We used a comparative developmental approach and eye-tracking methodology to assess visual attention in human and macaque infants to faces naturally varying in their distance from a prototypical face. In Experiment 1, we examined the preference for faces relatively close to or far from the prototype in 12-month-old human infants with human adult female faces. Infants preferred faces closer to the average than faces farther from it. In Experiment 2, we measured the looking time of 3-month-old rhesus macaques (Macaca mulatta) viewing macaque faces varying in their distance from the prototype. Like human infants, macaque infants looked longer to faces closer to the average. In Experiments 3 and 4, both species were presented with unfamiliar categories of faces (i.e., macaque infants tested with adult macaque faces; human infants and adults tested with infant macaque faces) and showed no prototype preferences, suggesting that the prototypicality effect is experience-dependent. Overall, the findings suggest a common processing mechanism across species, leading to averageness preferences in primates

    A new hypothesis for the cancer mechanism

    Full text link

    Anti-androgens may protect against severe COVID-19 outcomes: results from a prospective cohort study of 77 hospitalized men.

    No full text
    The COVID‐19 pandemic has disproportionally affected men. 1 Men infected with SARS‐CoV‐2 are more than twice as likely to be admitted to the intensive care unit (ICU). 2 This disparity in ICU admissions suggests the important role of androgens in COVID‐19 severity. 3 Previously, we reported that among 122 men hospitalized due to COVID‐19, 79% were diagnosed with androgenetic alopecia (AGA), 4 which is commonly treated with anti‐androgens. Anti‐androgens commonly used in the treatment of AGA such as finasteride, dutasteride, spironolactone, and bicalutamide could improve outcomes among men infected by SARS‐CoV‐2
    corecore