7 research outputs found

    Spatial Distribution of Cryptic Species Diversity in European Freshwater Amphipods (Gammarus fossarum) as Revealed by Pyrosequencing

    Get PDF
    In order to understand and protect ecosystems, local gene pools need to be evaluated with respect to their uniqueness. Cryptic species present a challenge in this context because their presence, if unrecognized, may lead to serious misjudgement of the distribution of evolutionarily distinct genetic entities. In this study, we describe the current geographical distribution of cryptic species of the ecologically important stream amphipod Gammarus fossarum (types A, B and C). We use a novel pyrosequencing assay for molecular species identification and survey 62 populations in Switzerland, plus several populations in Germany and eastern France. In addition, we compile data from previous publications (mainly Germany). A clear transition is observed from type A in the east (Danube and Po drainages) to types B and, more rarely, C in the west (Meuse, Rhone, and four smaller French river systems). Within the Rhine drainage, the cryptic species meet in a contact zone which spans the entire G. fossarum distribution range from north to south. This large-scale geographical sorting indicates that types A and B persisted in separate refugia during Pleistocene glaciations. Within the contact zone, the species rarely co-occur at the same site, suggesting that ecological processes may preclude long-term coexistence. The clear phylogeographical signal observed in this study implies that, in many parts of Europe, only one of the cryptic species is present

    Population connectivity: dam migration mitigations and contemporary site fidelity in arctic char

    Get PDF
    Background: Animal feeding and spawning migrations may be limited by physical barriers and behavioral interactions. Dam constructions (e. g. hydropower) commonly include gateways for fish migrations to sustain ecological connectivity. Relative genetic impacts of fish passage devices versus natural processes (e. g. hybrid inferiority) are, however, rarely studied. We examined genetic (i.e. microsatellite) population connectivity of highly migrating lake-dwelling Arctic char (Salvelinus alpinus), introduced 20 generations ago, across and within two subalpine lakes separated by a dam with a subterranean tunnel and spill gates after 7 generations. Due to water flow regime, the time window for fish migration is highly restricted. Results: Char populations, with similar genetic structuring and diversity observed across and within lakes, were admixed across the dam with fishways during feeding. For spawning, however, statistically significant, but very low population differentiation (theta; 0.002 - 0.013) was found in nine out of ten reproductive site comparisons, reflecting interactions between extensive migration (mean first generation (F(0)) = 10.8%) and initial site fidelity. Simulations indicated that genetic drift among relatively small effective populations (mean N(e) = 62) may have caused the observed contemporary differentiation. Novel Bayesian analyses indicated mean contributions of 71% F(0) population hybrids in spawning populations, of which 76% had maternal or paternal native origin. Conclusions: Ecological connectivity between lakes separated by a dam has been retained through construction of fishways for feeding migration. Considerable survival and homing to ancestral spawning sites in hybrid progeny was documented. Population differentiation despite preceding admixture is likely caused by contemporary reduced reproductive fitness of population hybrids. The study documents the beginning stages of population divergence among spatial aggregations with recent common ancestry. Full article available at http://www.biomedcentral.com/1471-2148/11/20

    Origins and genetic diversity among Atlantic salmon recolonizing upstream areas of a large South European river following restoration of connectivity and stocking

    No full text
    corecore