989 research outputs found

    Magnetic-field-induced charge redistribution in disordered graphene double quantum dots

    Get PDF
    We have studied the transport properties of a large graphene double quantum dot under the influence of a background disorder potential and a magnetic field. At low temperatures, the evolution of the charge-stability diagram as a function of the B field is investigated up to 10 T. Our results indicate that the charging energy of the quantum dot is reduced, and hence the effective size of the dot increases at a high magnetic field. We provide an explanation of our results using a tight-binding model, which describes the charge redistribution in a disordered graphene quantum dot via the formation of Landau levels and edge states. Our model suggests that the tunnel barriers separating different electron/hole puddles in a dot become transparent at high B fields, resulting in the charge delocalization and reduced charging energy observed experimentally.This work was financially supported by the European GRAND project (ICT/FET, Contract No. 215752) and EPSRC

    Estimation of colorectal adenoma recurrence with dependent censoring

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Due to early colonoscopy for some participants, interval-censored observations can be introduced into the data of a colorectal polyp prevention trial. The censoring could be dependent of risk of recurrence if the reasons of having early colonoscopy are associated with recurrence. This can complicate estimation of the recurrence rate.</p> <p>Methods</p> <p>We propose to use midpoint imputation to convert interval-censored data problems to right censored data problems. To adjust for potential dependent censoring, we use information from auxiliary variables to define risk groups to perform the weighted Kaplan-Meier estimation to the midpoint imputed data. The risk groups are defined using two risk scores derived from two working proportional hazards models with the auxiliary variables as the covariates. One is for the recurrence time and the other is for the censoring time. The method described here is explored by simulation and illustrated with an example from a colorectal polyp prevention trial.</p> <p>Results</p> <p>We first show that midpoint imputation under an assumption of independent censoring will produce an unbiased estimate of recurrence rate at the end of the trial, which is often the main interest of a colorectal polyp prevention trial, and then show in simulations that the weighted Kaplan-Meier method using the information from auxiliary variables based on the midpoint imputed data can improve efficiency in a situation with independent censoring and reduce bias in a situation with dependent censoring compared to the conventional methods, while estimating the recurrence rate at the end of the trial.</p> <p>Conclusion</p> <p>The research in this paper uses midpoint imputation to handle interval-censored observations and then uses the information from auxiliary variables to adjust for dependent censoring by incorporating them into the weighted Kaplan-Meier estimation. This approach can handle a situation with multiple auxiliary variables by deriving two risk scores from two working PH models. Although the idea of this approach might appear simple, the results do show that the weighted Kaplan-Meier approach can gain efficiency and reduce bias due to dependent censoring.</p

    RNAseq Analyses Identify Tumor Necrosis Factor-Mediated Inflammation as a Major Abnormality in ALS Spinal Cord

    Get PDF
    ALS is a rapidly progressive, devastating neurodegenerative illness of adults that produces disabling weakness and spasticity arising from death of lower and upper motor neurons. No meaningful therapies exist to slow ALS progression, and molecular insights into pathogenesis and progression are sorely needed. In that context, we used high-depth, next generation RNA sequencing (RNAseq, Illumina) to define gene network abnormalities in RNA samples depleted of rRNA and isolated from cervical spinal cord sections of 7 ALS and 8 CTL samples. We aligned \u3e50 million 2X150 bp paired-end sequences/sample to the hg19 human genome and applied three different algorithms (Cuffdiff2, DEseq2, EdgeR) for identification of differentially expressed genes (DEG’s). Ingenuity Pathways Analysis (IPA) and Weighted Gene Co-expression Network Analysis (WGCNA) identified inflammatory processes as significantly elevated in our ALS samples, with tumor necrosis factor (TNF) found to be a major pathway regulator (IPA) and TNFα-induced protein 2 (TNFAIP2) as a major network “hub” gene (WGCNA). Using the oPOSSUM algorithm, we analyzed transcription factors (TF) controlling expression of the nine DEG/hub genes in the ALS samples and identified TF’s involved in inflammation (NFkB, REL, NFkB1) and macrophage function (NR1H2::RXRA heterodimer). Transient expression in human iPSC-derived motor neurons of TNFAIP2 (also a DEG identified by all three algorithms) reduced cell viability and induced caspase 3/7 activation. Using high-density RNAseq, multiple algorithms for DEG identification, and an unsupervised gene co-expression network approach, we identified significant elevation of inflammatory processes in ALS spinal cord with TNF as a major regulatory molecule. Overexpression of the DEG TNFAIP2 in human motor neurons, the population most vulnerable to die in ALS, increased cell death and caspase 3/7 activation. We propose that therapies targeted to reduce inflammatory TNFα signaling may be helpful in ALS patients

    Difficulties in assessing cytomegalovirus-associated gastric perforation in an HIV-infected patient

    Get PDF
    BACKGROUND: Active Cytomegalovirus (CMV) infection is a common complication in advanced symptomatic Human Immunodeficiency Virus (HIV) infection. CMV-induced intestinal perforations are hard to diagnose and may be observed throughout the gastrointestinal tract. Isolated stomach perforation is exceptional. CASE PRESENTATION: A 47-year-old man was admitted to our intensive care unit with multiorgan failure. Gastrointestinal endoscopic examination showed erythematous gastritis but normal duodenum and colon. CMV blood culture was positive. Histologic examination of a gastric biopsy showed inflammatory infiltrate and immunostaining typical intranuclear CMV inclusion bodies. Concomitant abdominal CT scan disclosed large peripancreatic hypodensities without pneumoperitoneum. The patient died despite supportive therapies and ganciclovir infusion. Postmortem examination showed a 4-cm gastric perforation adhering to the transverse colon and liver, with a thick necrotic inflammatory coating around the pancreas. The whole GI tract, except the stomach, was normal. As other causes, especially Helicobacter pylori infection could be ruled out, a causal relationship between CMV and gastric disease was assumed. CONCLUSION: CMV may be responsible for gastric perforations, with difficulties in assessing the diagnosis. Early diagnosis based on cautious endoscopy and histopathologic examination is needed to make a favorable outcome possible

    Estimation of Recurrence of Colorectal Adenomas with Dependent Censoring Using Weighted Logistic Regression

    Get PDF
    In colorectal polyp prevention trials, estimation of the rate of recurrence of adenomas at the end of the trial may be complicated by dependent censoring, that is, time to follow-up colonoscopy and dropout may be dependent on time to recurrence. Assuming that the auxiliary variables capture the dependence between recurrence and censoring times, we propose to fit two working models with the auxiliary variables as covariates to define risk groups and then extend an existing weighted logistic regression method for independent censoring to each risk group to accommodate potential dependent censoring. In a simulation study, we show that the proposed method results in both a gain in efficiency and reduction in bias for estimating the recurrence rate. We illustrate the methodology by analyzing a recurrent adenoma dataset from a colorectal polyp prevention trial

    Genetic screening and democracy: lessons from debating genetic screening criteria in the Netherlands

    Get PDF
    Recent decades have witnessed increasing possibilities for genetic testing and screening. In clinical genetics, the doctor’s office defined a secluded space for discussion of sensitive reproductive options in cases of elevated risk for genetic disorders in individuals or their offspring. When prenatal screening for all pregnant women became conceivable, the potential increase in scale made social and ethical concerns relevant for the whole of society. Whereas genetic testing in clinical genetic practice was widely accepted, prenatal screening at a population level met with unease. Concerns were raised regarding social pressure to screen: the sum of individual choice might result in a ‘collective eugenics’. The government’s involvement also raised suspicion: actively offering screening evoked associations with eugenic population policies from the first half of the 20th century. By reconstructing elements of policy and public debate on prenatal screening in the Netherlands from the past 30 years, this article discusses how the government has gradually changed its role in balancing the interest of the individual and the collective on genetic reproductive issues. Against a background of increasing knowledge about and demand for prenatal screening among the population, governmental policy changed from focusing on protection by banning screening toward facilitating screening in a careful and ethically sound way by providing adequate information, decision aids and quality assessment instruments. In the meanwhile, invigorating democracy in public debate may entail discussing concepts of ‘the good life’ in relation to living with or without impairments and dealing with genetic information about oneself or one’s offspring

    Interference of functional dual-tasks on gait in untrained people with Parkinson's disease and healthy controls: a cross-sectional study

    Full text link
    [EN] Background In Parkinson's disease (PD) population, performing secondary tasks while walking further deteriorates gait and restrict mobility in functional contexts of daily life. This study (1) analyzed the interference of functional cognitive and motor secondary task on untrained people with PD and (2) compared their walking with healthy subjects. Methods Forty people with PD (aged 66.72 [7.5] years, Hoehn and Yahr stage I-II-III, on-medication) composed the PD group (PDG) and 43 participants (aged 66.60 [8.75] years) formed the group of healthy counterparts (HG). Gait was evaluated through spatiotemporal, kinematic and kinetic outcomes in five conditions: single task (ST) and visual, verbal, auditory and motor dual-task (DT). Results The velocity, stride length, and braking force performance of both groups was statistically higher in the ST condition than in verbal, auditory and motor DT (p.05). Conclusions: In untrained participants with PD, verbal and motor secondary tasks affect gait significantly, while auditory and visual tasks interfere to a lesser extent. Untrained people with PD have a poorer gait performance than their healthy counterparts, but in different grades according to the analyzed variables. Trial registration The data in this paper are part of a single-blind, randomized, controlled trial and correspond to the evaluations performed before a physical rehabilitation program, retrospectively registered with the number at clinicaltrial.govNCT04038866.San Martín Valenzuela, C.; Dueñas Moscardó, L.; Lopez Pascual, J.; Serra-Añó, P.; Tomás, JM. (2020). Interference of functional dual-tasks on gait in untrained people with Parkinson's disease and healthy controls: a cross-sectional study. BMC Musculoskeletal Disorders. 21(1):1-11. https://doi.org/10.1186/s12891-020-03431-xS111211Jankovic J. Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry. 2008;79:368–76.Soh S-E, McGinley JL, Watts JJ, Iansek R, Murphy AT, Menz HB, et al. Determinants of health-related quality of life in people with Parkinson’s disease: a path analysis. Qual Life Res. 2013;22:1543–53.Tan D, Danoudis M, McGinley J, Morris ME. Relationships between motor aspects of gait impairments and activity limitations in people with Parkinson’s disease: a systematic review. Parkinsonism Relat Disord. 2012;18:117–24.Kelly VE, Eusterbrock AJ, Shumway-Cook A. A review of dual-task walking deficits in people with Parkinson’s disease: motor and cognitive contributions, mechanisms, and clinical implications. Parkinson’s Disease. 2012;918719.Sofuwa O, Nieuwboer A, Desloovere K, Willems A-M, Chavret F, Jonkers I. Quantitative gait analysis in Parkinson’s disease: comparison with a healthy control group. Arch Phys Med Rehabil. 2005;86:1007–13.Beauchet O, Berrut G. Gait and dual-task: definition, interest, and perspectives in the elderly. Psychologie et NeuroPsychiatrie du Vieillissement. 2006;4:215–25.Raffegeau TE, Krehbiel LM, Kang N, Thijs FJ, Altmann LJP, Cauraugh JH, et al. A meta-analysis: Parkinson’s disease and dual-task walking. Parkinsonism Relat Disord. 2019 May;62:28–35.Eric R. Kandel, James H. Schwartz, Thomas M. Jessell, Steven a. Siegelbaum, A. J. Hudspeth. Principles of neural science. Fifth edition. McGraw-Hill Medical: United States of America; 2013.Eisinger RS, Cernera S, Gittis A, Gunduz A, Okun MS. A review of basal ganglia circuits and physiology: application to deep brain stimulation. Parkinsonism Relat Disord. 2019 Feb;59:9–20.Isella V, Mapelli C, Morielli N, De Gaspari D, Siri C, Pezzoli G, et al. Validity and metric of MiniMental Parkinson and MiniMental state examination in Parkinson’s disease. Neurol Sci. 2013;34:1751–8.Morris ME, McGinley J, Huxham F, Collier J, Iansek R. Constraints on the kinetic, kinematic and spatiotemporal parameters of gait in Parkinson’s disease. Hum Mov Sci. 1999;18:461–83.Brauer SG, Morris ME. Can people with Parkinson’s disease improve dual tasking when walking? Gait & Posture. 2010;31:229–33.Baron EI, Miller Koop M, Streicher MC, Rosenfeldt AB, Alberts JL. Altered kinematics of arm swing in Parkinson’s disease patients indicates declines in gait under dual-task conditions. Parkinsonism Relat Disord. 2018;48:61–7.Rochester L, Galna B, Lord S, Burn D. The nature of dual-task interference during gait in incident Parkinson’s disease. Neuroscience. 2014;265:83–94.Logan D, Kiemel T, Dominici N, Cappellini G, Ivanenko Y, Lacquaniti F, et al. The many roles of vision during walking. Exp Brain Res. 2010;206:337–50.de Luna RA, Mihailovic A, Nguyen AM, Friedman DS, Gitlin LN, Ramulu PY. The Association of Glaucomatous Visual Field Loss and Balance. Transl Vis Sci Technol. 2017 May 22;6(3):8.Suarez H, Geisinger D, Ferreira ED, Nogueira S, Arocena S, Roman CS, et al. Balance in Parkinson’s disease patients changing the visual input. Brazilian Journal of Otorhinolaryngology. 2011;77:651–5.Wu T, Hallett M. Neural correlates of dual task performance in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2008;79:760–6.Canning CG. The effect of directing attention during walking under dual-task conditions in Parkinson’s disease. Parkinsonism Relat Disord. 2005;11:95–9.Wu T, Liu J, Zhang H, Hallett M, Zheng Z, Chan P. Attention to automatic movements in Parkinson’s disease: modified automatic mode in the striatum. Cereb Cortex. 2015;25:3330–42.de Roiz R. M, Cacho EWA, Pazinatto MM, Reis JG, Cliquet a. Barasnevicius-Quagliato EMA Gait analysis comparing Parkinson’s disease with healthy elderly subjects Arq Neuropsiquiatr. 2010;68:81–6.Grabli D, Karachi C, Welter M-L, Lau B, Hirsch EC, Vidailhet M, et al. Normal and pathological gait: what we learn from Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2012 Oct;83(10):979–85.Anna C, Serena F, Maurizio F. Del Sorbo Francesca, Romito Luigi M., Elia Antonio E., et al. quantitative gait analysis in parkin disease: possible role of dystonia. Mov Disord. 2016;31:1720–8.Morris M, Iansek R, McGinley J, Matyas T, Huxham F. Three-dimensional gait biomechanics in Parkinson’s disease: evidence for a centrally mediated amplitude regulation disorder. Mov Disord. 2005;20:40–50.Peterson CL, Kautz SA, Neptune RR. Braking and propulsive impulses increase with speed during accelerated and decelerated walking. Gait Posture. 2011;33:562–7.Chiu M-C, Wang M-J. The effect of gait speed and gender on perceived exertion, muscle activity, joint motion of lower extremity, ground reaction force and heart rate during normal walking. Gait & Posture. 2007;25:385–92.Muniz AMS, Liu H, Lyons KE, Pahwa R, Liu W, Nobre FF, et al. Comparison among probabilistic neural network, support vector machine and logistic regression for evaluating the effect of subthalamic stimulation in Parkinson disease on ground reaction force during gait. J Biomech. 2010;43:720–6.Chastan N, Do MC, Bonneville F, Torny F, Bloch F, Westby GWM, et al. Gait and balance disorders in Parkinson’s disease: impaired active braking of the fall of Centre of gravity. Mov Disord. 2009;24:188–95.Perneger T. What's wrong with Bonferroni adjustments. BMJ. 1998 Apr 18;316(7139):1236–8

    Enhanced neuronal Met signalling levels in ALS mice delay disease onset

    Get PDF
    Signalling by receptor tyrosine kinases (RTKs) coordinates basic cellular processes during development and in adulthood. Whereas aberrant RTK signalling can lead to cancer, reactivation of RTKs is often found following stress or cell damage. This has led to the common belief that RTKs can counteract degenerative processes and so strategies to exploit them for therapy have been extensively explored. An understanding of how RTK stimuli act at cellular levels is needed, however, to evaluate their mechanism of therapeutic action. In this study, we genetically explored the biological and functional significance of enhanced signalling by the Met RTK in neurons, in the context of a neurodegenerative disease. Conditional met-transgenic mice, namely Rosa26LacZ−stop−Met, have been engineered to trigger increased Met signalling in a temporal and tissue-specific regulated manner. Enhancing Met levels in neurons does not affect either motor neuron (MN) development or maintenance. In contrast, increased neuronal Met in amyotrophic lateral sclerosis (ALS) mice prolongs life span, retards MN loss, and ameliorates motor performance, by selectively delaying disease onset. Thus, our studies highlight the properties of RTKs to counteract toxic signals in a disease characterized by dysfunction of multiple cell types by acting in MNs. Moreover, they emphasize the relevance of genetically assessing the effectiveness of agents targeting neurons during ALS evolution

    Properties of Graphene: A Theoretical Perspective

    Full text link
    In this review, we provide an in-depth description of the physics of monolayer and bilayer graphene from a theorist's perspective. We discuss the physical properties of graphene in an external magnetic field, reflecting the chiral nature of the quasiparticles near the Dirac point with a Landau level at zero energy. We address the unique integer quantum Hall effects, the role of electron correlations, and the recent observation of the fractional quantum Hall effect in the monolayer graphene. The quantum Hall effect in bilayer graphene is fundamentally different from that of a monolayer, reflecting the unique band structure of this system. The theory of transport in the absence of an external magnetic field is discussed in detail, along with the role of disorder studied in various theoretical models. We highlight the differences and similarities between monolayer and bilayer graphene, and focus on thermodynamic properties such as the compressibility, the plasmon spectra, the weak localization correction, quantum Hall effect, and optical properties. Confinement of electrons in graphene is nontrivial due to Klein tunneling. We review various theoretical and experimental studies of quantum confined structures made from graphene. The band structure of graphene nanoribbons and the role of the sublattice symmetry, edge geometry and the size of the nanoribbon on the electronic and magnetic properties are very active areas of research, and a detailed review of these topics is presented. Also, the effects of substrate interactions, adsorbed atoms, lattice defects and doping on the band structure of finite-sized graphene systems are discussed. We also include a brief description of graphane -- gapped material obtained from graphene by attaching hydrogen atoms to each carbon atom in the lattice.Comment: 189 pages. submitted in Advances in Physic
    corecore