23 research outputs found

    A Nested Case-Control Study of Intrauterine Exposure to Persistent Organochlorine Pollutants in Relation to Risk of Type 1 Diabetes

    Get PDF
    BACKGROUND: The incidence of type 1 diabetes in Europe is increasing at a rate of about 3% per year and there is also an increasing incidence throughout the world. Type 1 diabetes is a complex disease caused by multiple genetic and environmental factors. Persistent organochlorine pollutants (POPs) have been suggested as a triggering factor for developing childhood type 1 diabetes. The aim of this case-control study was to assess possible impacts of in utero exposure to POPs on type 1 diabetes. METHODOLOGY/ PRINCIPAL FINDINGS: The study was performed as a case-control study within a biobank in Malmö, a city located in the Southern part of Sweden. The study included 150 cases (children who had their diagnosis mostly before 18 years of age) and 150 controls, matched for gender and day of birth. 2,2',4,4',5,5'-hexachlorobiphenyl (PCB-153) and the major DDT metabolite 1,1-dichloro-2,2-bis (p-chlorophenyl)-ethylene (p,p'-DDE) were used as a biomarkers for POP exposure. When comparing the quartile with the highest maternal serum concentrations of PCB-153 with the other quartiles, an odds ratio (OR) of 0.73 (95% confidence interval [CI] 0.42, 1.27) was obtained. Similar results was obtained for p,p'-DDE (OR 0.56, 95% CI 0.29, 1.08). CONCLUSIONS: The hypothesis that in utero exposure to POPs will trigger the risk for developing type 1 diabetes was not supported by the results. The risk estimates did, although not statistically significant, go in the opposite direction. However, it is not reasonable to believe that exposure to POPs should protect against type 1 diabetes

    An untargeted multi-technique metabolomics approach to studying intracellular metabolites of HepG2 cells exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>In vitro </it>cell systems together with omics methods represent promising alternatives to conventional animal models for toxicity testing. Transcriptomic and proteomic approaches have been widely applied <it>in vitro </it>but relatively few studies have used metabolomics. Therefore, the goal of the present study was to develop an untargeted methodology for performing reproducible metabolomics on <it>in vitro </it>systems. The human liver cell line HepG2, and the well-known hepatotoxic and non-genotoxic carcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), were used as the <it>in vitro </it>model system and model toxicant, respectively.</p> <p>Results</p> <p>The study focused on the analysis of intracellular metabolites using NMR, LC-MS and GC-MS, with emphasis on the reproducibility and repeatability of the data. State of the art pre-processing and alignment tools and multivariate statistics were used to detect significantly altered levels of metabolites after exposing HepG2 cells to TCDD. Several metabolites identified using databases, literature and LC-nanomate-Orbitrap analysis were affected by the treatment. The observed changes in metabolite levels are discussed in relation to the reported effects of TCDD.</p> <p>Conclusions</p> <p>Untargeted profiling of the polar and apolar metabolites of <it>in vitro </it>cultured HepG2 cells is a valid approach to studying the effects of TCDD on the cell metabolome. The approach described in this research demonstrates that highly reproducible experiments and correct normalization of the datasets are essential for obtaining reliable results. The effects of TCDD on HepG2 cells reported herein are in agreement with previous studies and serve to validate the procedures used in the present work.</p

    Differential inflammatory potential of particulate matter (PM) size fractions from Imperial Valley, CA.

    No full text
    Particulate matter (PM) in Imperial Valley originates from a variety of sources such as agriculture, traffic at the border crossing, emissions from the cross-border city of Mexicali, and the drying lakebed of the Salton Sea. Dust storms in Imperial Valley, California regularly lead to exceedances of the federal air quality standards for PM10 (diameter less than 10 microns). To determine if there are differences in the composition and biological response to Imperial County PM by size, ambient PM samples were collected from a sampling unit stationed in the northern-most part of the valley, South of the Salton Sea. Ultrafine, fine, and coarse PM samples were collected and extracted separately. Chemical composition of each size fraction was obtained after extraction by using several analytical techniques, and biological response was measured by exposing a cell line of macrophages to particles and quantifying subsequent gene expression. Biological measurements demonstrated coarse PM induced an inflammatory response in macrophages measured in increases of inflammatory markers IL-1β, IL-6, IL-8 and CXCL2 expression, whereas ultrafine and fine PM only demonstrated significant increases in expression of CYP1a1. These differential responses were due not only to particle size, but to the distinct chemical profiles of each size faction as well. Community groups in Imperial Valley have already completed several projects to learn more about local air quality, giving residents access to data that provides real-time levels of PM2.5 and PM10 as well as recommendations on health-based practices dependent on the current AQI (air quality index). However, to date there is no information on the composition or toxicity of ambient PM from the region. The data presented here could provide more definitive information on the toxicity of PM by size, and further inform the community on local air quality

    Exposure to Diesel Exhaust Particle Extracts (DEPe) Impairs Some Polarization Markers and Functions of Human Macrophages through Activation of AhR and Nrf2.

    No full text
    International audienceMacrophages (MΦ), well-known to play an important role in immune response, also respond to environmental toxic chemicals such as diesel exhaust particles (DEP). Potential effects of DEPs towards MΦ polarization, a key hall-mark of MΦ physiology, remain however poorly documented. This study was therefore designed to evaluate the effects of a reference DEP extract (DEPe) on human MΦ polarization. Human blood monocytes-derived MΦ were incubated with IFNγ+LPS or IL-4 to obtain M1 and M2 subtypes, respectively; a 24 h exposure of polarizing MΦ to 10 μg/ml DEPe was found to impair expression of some macrophagic M1 and M2 markers, without however overall inhibition of M1 and M2 polarization processes. Notably, DEPe treatment increased the secretion of the M1 marker IL-8 and the M2 marker IL-10 in both MΦ subtypes, whereas it reduced lipopolysaccharide-induced IL-6 and IL-12p40 secretion in M1 MΦ. In M2 MΦ, DEPe exposure led to a reduction of CD200R expression and of CCL17, CCL18 and CCL22 secretion, associated with a lower chemotaxis of CCR4-positive cells. DEPe activated the Nrf2 and AhR pathways and induced expression of their reference target genes such as Hmox-1 and cytochrome P-4501B1 in M1 and M2 MΦ. Nrf2 or AhR silencing through RNA interference prevented DEPe-related down-regulation of IL-6. AhR silencing also inhibited the down-secretion of IL-12p40 and CCL18 in M1- and M2-DEPe-exposed MΦ, respectively. DEPs are therefore likely to alter expression of some M1 and M2 markers in an AhR- and Nrf2-dependent manner; such regulations may contribute to deleterious immune effects of atmospheric DEP

    The AHR represses nucleotide excision repair and apoptosis and contributes to UV-induced skin carcinogenesis

    No full text
    Ultraviolet B (UVB) radiation induces mutagenic DNA photoproducts, in particular cyclobutane pyrimidine dimers (CPDs), in epidermal keratinocytes (KC). To prevent skin carcinogenesis, these DNA photoproducts must be removed by nucleotide excision repair (NER) or apoptosis. Here we report that the UVB-sensitive transcription factor aryl hydrocarbon receptor (AHR) attenuates the clearance of UVB-induced CPDs in human HaCaT KC and skin from SKH-1 hairless mice. Subsequent RNA interference and inhibitor studies in KC revealed that AHR specifically suppresses global genome but not transcription-coupled NER. In further experiments, we found that the accelerated repair of CPDs in AHR-compromised KC depended on a modulation of the p27 tumor suppressor protein. Accordingly, p27 protein levels were increased in AHR-silenced KC and skin biopsies from AHR-/- mice, and critical for the improvement of NER. Besides increasing NER activity, AHR inhibition was accompanied by an enhanced occurrence of DNA double-strand breaks triggering KC apoptosis at later time points after irradiation. The UVB-activated AHR thus acts as a negative regulator of both early defense systems against carcinogenesis, NER and apoptosis, implying that it exhibits tumorigenic functions in UVB-exposed skin. In fact, AHR-/- mice developed 50% less UVB-induced cutaneous squamous cell carcinomas in a chronic photocarcinogenesis study than their AHR+/+ littermates. Taken together, our data reveal that AHR influences DNA damage-dependent responses in UVB-irradiated KC and critically contributes to skin photocarcinogenesis in mice
    corecore