494 research outputs found

    Quantitative Modeling of Currents from a Voltage Gated Ion Channel Undergoing Fast Inactivation

    Get PDF
    Ion channels play a central role in setting gradients of ion concentration and electrostatic potentials, which in turn regulate sensory systems and other functions. Based on the structure of the open configuration of the Kv1.2 channel and the suggestion that the two ends of the N-terminal inactivating peptide form a bivalent complex that simultaneously blocks the channel pore and binds to the cytoplasmic T1 domain, we propose a six state kinetic model that for the first time reproduces the kinetics of recovery of the Drosophila Shaker over the full range of time scales and hyperpolarization potentials, including tail currents. The model is motivated by a normal mode analysis of the inactivated channel that suggests that a displacement consistent with models of the closed state propagates to the T1 domain via the S1-T1 linker. This motion stretches the bound (inactivating) peptide, hastening the unblocking of the pore. This pulling force is incorporated into the rates of the open to blocked states, capturing the fast recovery phase of the current for repolarization events shorter than 1 ms. If the membrane potential is hyperpolarized, essential dynamics further suggests that the T1 domain returns to a configuration where the peptide is unstretched and the S1-T1 linker is extended. Coupling this novel hyperpolarized substate to the closed, open and blocked pore states is enough to quantitatively estimate the number of open channels as a function of time and membrane potential. A straightforward prediction of the model is that a slow ramping of the potential leads to very small currents

    Supervolcanoes Within an Ancient Volcanic Province in Arabia Terra, Mars

    Get PDF
    Several irregularly shaped craters located within Arabia Terra, Mars represent a new type of highland volcanic construct and together constitute a previously unrecognized martian igneous province. Similar to terrestrial supervolcanoes, these low-relief paterae display a range of geomorphic features related to structural collapse, effusive volcanism, and explosive eruptions. Extruded lavas contributed to the formation of enigmatic highland ridged plains in Arabia Terra. Outgassed sulfur and erupted fine-grained pyroclastics from these calderas likely fed the formation of altered, layered sedimentary rocks and fretted terrain found throughout the equatorial region. Discovery of a new type of volcanic construct in the Arabia volcanic province fundamentally changes the picture of ancient volcanism and climate evolution on Mars. Other eroded topographic basins in the ancient Martian highlands that have been dismissed as degraded impact craters should be reconsidered as possible volcanic constructs formed in an early phase of widespread, disseminated magmatism on Mars

    Genomewide Analysis of Inherited Variation Associated with Phosphorylation of PI3K/AKT/mTOR Signaling Proteins

    Get PDF
    While there exists a wealth of information about genetic influences on gene expression, less is known about how inherited variation influences the expression and post-translational modifications of proteins, especially those involved in intracellular signaling. The PI3K/AKT/mTOR signaling pathway contains several such proteins that have been implicated in a number of diseases, including a variety of cancers and some psychiatric disorders. To assess whether the activation of this pathway is influenced by genetic factors, we measured phosphorylated and total levels of three key proteins in the pathway (AKT1, p70S6K, 4E-BP1) by ELISA in 122 lymphoblastoid cell lines from 14 families. Interestingly, the phenotypes with the highest proportion of genetic influence were the ratios of phosphorylated to total protein for two of the pathway members: AKT1 and p70S6K. Genomewide linkage analysis suggested several loci of interest for these phenotypes, including a linkage peak for the AKT1 phenotype that contained the AKT1 gene on chromosome 14. Linkage peaks for the phosphorylated:total protein ratios of AKT1 and p70S6K also overlapped on chromosome 3. We selected and genotyped candidate genes from under the linkage peaks, and several statistically significant associations were found. One polymorphism in HSP90AA1 was associated with the ratio of phosphorylated to total AKT1, and polymorphisms in RAF1 and GRM7 were associated with the ratio of phosphorylated to total p70S6K. These findings, representing the first genomewide search for variants influencing human protein phosphorylation, provide useful information about the PI3K/AKT/mTOR pathway and serve as a valuable proof of concept for studies integrating human genomics and proteomics

    IL28B Genetic Variation Is Associated with Spontaneous Clearance of Hepatitis C Virus, Treatment Response, Serum IL-28B Levels in Chinese Population

    Get PDF
    <p><b>Background:</b> The interleukin-28B gene (IL28B) locus has been associated with host resistance to hepatitis C virus (HCV) infection and response to PEG-IFN/RBV treatment in western populations. This study was to determine whether this gene variant is also associated with spontaneous clearance of HCV infection, treatment response and IL-28B protein production in Chinese patients.</p> <p><b>Methods:</b> We genotyped IL28B genetic variations (rs12980275, rs8103142, rs8099917 and rs12979860) by pyrosequencing DNA samples from cohorts consisting of 529 subjects with persistent HCV infection, 196 subjects who cleared the infection, 171 healthy individuals and 235 chronic HCV patients underwent IFN/RBV treatment. The expression of IL-28B were measured by ELISA and RT-PCR.</p> <p><b>Results:</b> We found that the four IL28B variants were in complete linkage disequilibrium (r2 = 0.97–0.98). The rs12979860 CC genotype was strongly associated with spontaneously HCV clearance and successful IFN/RBV treatment compared to the CT/TT. IL-28B levels in persistent HCV patients were significantly lower than subjects who spontaneously resolved HCV and healthy controls and were also associated with high levels of ALT (alanine aminotransferase) and AST (aspartate aminotransferase). IL-28B levels were also significantly lower in individuals carrying T alleles than CC homozygous.</p> <p><b>Conclusions:</b> Thus, the rs12979860-CC variant upstream of IL28B gene is associated with spontaneous clearance of HCV, susceptible to IFN/RBV treatment and increased IL-28B levels in this Chinese population.</p&gt

    Transcriptional Homeostasis of a Mangrove Species, Ceriops tagal, in Saline Environments, as Revealed by Microarray Analysis

    Get PDF
    <div><h3>Background</h3><p>Differential responses to the environmental stresses at the level of transcription play a critical role in adaptation. Mangrove species compose a dominant community in intertidal zones and form dense forests at the sea-land interface, and although the anatomical and physiological features associated with their salt-tolerant lifestyles have been well characterized, little is known about the impact of transcriptional phenotypes on their adaptation to these saline environments.</p> <h3>Methodology and Principal findings</h3><p>We report the time-course transcript profiles in the roots of a true mangrove species, <em>Ceriops tagal</em>, as revealed by a series of microarray experiments. The expression of a total of 432 transcripts changed significantly in the roots of <em>C. tagal</em> under salt shock, of which 83 had a more than 2-fold change and were further assembled into 59 unigenes. Global transcription was stable at the early stage of salt stress and then was gradually dysregulated with the increased duration of the stress. Importantly, a pair-wise comparison of predicted homologous gene pairs revealed that the transcriptional regulations of most of the differentially expressed genes were highly divergent in <em>C. tagal</em> from that in salt-sensitive species, <em>Arabidopsis thaliana</em>.</p> <h3>Conclusions/Significance</h3><p>This work suggests that transcriptional homeostasis and specific transcriptional regulation are major events in the roots of <em>C. tagal</em> when subjected to salt shock, which could contribute to the establishment of adaptation to saline environments and, thus, facilitate the salt-tolerant lifestyle of this mangrove species. Furthermore, the candidate genes underlying the adaptation were identified through comparative analyses. This study provides a foundation for dissecting the genetic basis of the adaptation of mangroves to intertidal environments.</p> </div

    Inhibition of glucose metabolism selectively targets autoreactive follicular helper T cells.

    Get PDF
    Follicular helper T (TFH) cells are expanded in systemic lupus erythematosus, where they are required to produce high affinity autoantibodies. Eliminating TFH cells would, however compromise the production of protective antibodies against viral and bacterial pathogens. Here we show that inhibiting glucose metabolism results in a drastic reduction of the frequency and number of TFH cells in lupus-prone mice. However, this inhibition has little effect on the production of T-cell-dependent antibodies following immunization with an exogenous antigen or on the frequency of virus-specific TFH cells induced by infection with influenza. In contrast, glutaminolysis inhibition reduces both immunization-induced and autoimmune TFH cells and humoral responses. Solute transporter gene signature suggests different glucose and amino acid fluxes between autoimmune TFH cells and exogenous antigen-specific TFH cells. Thus, blocking glucose metabolism may provide an effective therapeutic approach to treat systemic autoimmunity by eliminating autoreactive TFH cells while preserving protective immunity against pathogens

    Ecologically Appropriate Xenobiotics Induce Cytochrome P450s in Apis mellifera

    Get PDF
    BACKGROUND: Honey bees are exposed to phytochemicals through the nectar, pollen and propolis consumed to sustain the colony. They may also encounter mycotoxins produced by Aspergillus fungi infesting pollen in beebread. Moreover, bees are exposed to agricultural pesticides, particularly in-hive acaricides used against the parasite Varroa destructor. They cope with these and other xenobiotics primarily through enzymatic detoxificative processes, but the regulation of detoxificative enzymes in honey bees remains largely unexplored. METHODOLOGY/PRINCIPAL FINDINGS: We used several approaches to ascertain effects of dietary toxins on bee susceptibility to synthetic and natural xenobiotics, including the acaricide tau-fluvalinate, the agricultural pesticide imidacloprid, and the naturally occurring mycotoxin aflatoxin. We administered potential inducers of cytochrome P450 enzymes, the principal biochemical system for Phase 1 detoxification in insects, to investigate how detoxification is regulated. The drug phenobarbital induces P450s in many insects, yet feeding bees with phenobarbital had no effect on the toxicity of tau-fluvalinate, a pesticide known to be detoxified by bee P450s. Similarly, no P450 induction, as measured by tau-fluvalinate tolerance, occurred in bees fed xanthotoxin, salicylic acid, or indole-3-carbinol, all of which induce P450s in other insects. Only quercetin, a common pollen and honey constituent, reduced tau-fluvalinate toxicity. In microarray comparisons no change in detoxificative gene expression was detected in phenobarbital-treated bees. However, northern blot analyses of guts of bees fed extracts of honey, pollen and propolis showed elevated expression of three CYP6AS P450 genes. Diet did not influence tau-fluvalinate or imidacloprid toxicity in bioassays; however, aflatoxin toxicity was higher in bees consuming sucrose or high-fructose corn syrup than in bees consuming honey. CONCLUSIONS/SIGNIFICANCE: These results suggest that regulation of honey bee P450s is tuned to chemicals occurring naturally in the hive environment and that, in terms of toxicological capacity, a diet of sugar is not equivalent to a diet of honey
    • …
    corecore