17 research outputs found

    Insecticide treated bednets: A review

    Get PDF
    The functioning and efficacy of Insecticide Treated Nets (ITNs) in controlling malaria are discussed in the present review. ITNs Insecticide Treated Nets (ITNs) have been shown to have a beneficial impact in reducing malaria mortality and morbidity in children. However, a few issues are still unresolved: for instance the short and long term effects of an artificially induced reduction in the intensity of malaria transmission on the immune system and the mortality of children is not entirely understood; further studies are needed on whether the spread of resistance to pyrethroids, which is the only class of insecticide currently recommended on nets, affects the effectiveness of ITNs so that resistance to these insecticides would constitutes a serious threat for the success of the malaria vector control programs. Lastly, the economic aspects are presented. The main problem is to find a way for a sustainable implementation of this methodology, that includes purchasing new bednets, delivery and the regular re-impregnation of the existing nets. Free delivery and retreatment in poor countries is not only more equitable but also more efficient than marketing methods

    Efficacy of bifenthrin-impregnated bednets against Anopheles funestus and pyrethroid-resistant Anopheles gambiae in North Cameroon

    Get PDF
    BACKGROUND: Recent field studies indicated that insecticide-treated bednets (ITNs) maintain their efficacy despite a high frequency of the knock-down resistance (kdr) gene in Anopheles gambiae populations. It was essential to evaluate ITNs efficacy in areas with metabolic-based resistance. METHODS: Bifenthrin was used in this experiment because it is considered a promising candidate for bednets impregnation. Nets were treated at 50 mg/m(2), a dose that has high insecticidal activity on kdr mosquitoes and at 5 mg/m(2), a dose that kills 95% of susceptible mosquitoes under laboratory conditions with 3 minutes exposure. Bednets were holed to mimic physical damage. The trial was conducted in three experimental huts from Pitoa, North-Cameroon where Anopheles gambiae displays metabolic resistance and cohabits with An. funestus. RESULTS: Bifenthrin at 50 mg/m(2 )significantly reduced anophelines' entry rate (>80%). This was not observed at 5 mg/m(2). Both treatments increased exophily in An. gambiae, and to a lesser extent in An. funestus. With bifenthrin at high dosage, over 60% reduction in blood feeding and 75–90% mortality rates were observed in both vectors. Despite presence of holes, only a single An. gambiae and two An. funestus females were collected inside the treated net, and all were found dead. The same trends were observed with low dosage bifenthrin though in most cases, no significant difference was found with the untreated control net. CONCLUSION: Bifenthrin-impregnated bednets at 50 mg/m(2 )were efficient in the reduction of human-vector contact in Pitoa. Considerable personal protection was gained against An. funestus and metabolic pyrethroid resistant An. gambiae populations

    Multiple Origins of Knockdown Resistance Mutations in the Afrotropical Mosquito Vector Anopheles gambiae

    Get PDF
    How often insecticide resistance mutations arise in natural insect populations is a fundamental question for understanding the evolution of resistance and also for modeling its spread. Moreover, the development of resistance is regarded as a favored model to study the molecular evolution of adaptive traits. In the malaria vector Anopheles gambiae two point mutations (L1014F and L1014S) in the voltage-gated sodium channel gene, that confer knockdown resistance (kdr) to DDT and pyrethroid insecticides, have been described. In order to determine whether resistance alleles result from single or multiple mutation events, genotyping of the kdr locus and partial sequencing of the upstream intron-1 was performed on a total of 288 A. gambiae S-form collected from 28 localities in 15 countries. Knockdown resistance alleles were found to be widespread in West Africa with co-occurrence of both 1014S and 1014F in West-Central localities. Differences in intron-1 haplotype composition suggest that kdr alleles may have arisen from at least four independent mutation events. Neutrality tests provided evidence for a selective sweep acting on this genomic region, particularly in West Africa. The frequency and distribution of these kdr haplotypes varied geographically, being influenced by an interplay between different mutational occurrences, gene flow and local selection. This has important practical implications for the management and sustainability of malaria vector control programs

    Biofilms of non-Candida albicans Candida species : quantification, structure and matrix composition

    Get PDF
    Most cases of candidiasis have been attributed to C. albicans, but recently, non- Candida albicans Candida (NCAC) species have been identified as common pathogens. The ability of Candida species to form biofilms has important clinical repercussions due to their increased resistance to antifungal therapy and the ability of yeast cells within the biofilms to withstand host immune defenses. Given this clinical importance of the biofilm growth form, the aim of this study was to characterize biofilms produced by three NCAC species, namely C. parapsilosis, C. tropicalis and C. glabrata. The biofilm forming ability of clinical isolates of C. parapsilosis, C. tropicalis and C. glabrata recovered from different sources, was evaluated by crystal violet staining. The structure and morphological characteristics of the biofilms were also assessed by scanning electron microscopy and the biofilm matrix composition analyzed for protein and carbohydrate content. All NCAC species were able to form biofilms although these were less extensive for C. glabrata compared with C. parapsilosis and C. tropicalis. It was evident that C. parapsilosis biofilm production was highly strain dependent, a feature not evident with C. glabrata and C. tropicalis. Scanning electron microscopy revealed structural differences for biofilms with respect to cell morphology and spatial arrangement. Candida parapsilosis biofilm matrices had large amounts of carbohydrate with less protein. Conversely, matrices extracted from C. tropicalis biofilms had low amounts of carbohydrate and protein. Interestingly, C. glabrata biofilm matrix was high in both protein and carbohydrate content. The present work demonstrates that biofilm forming ability, structure and matrix composition are highly species dependent with additional strain variability occurring with C. parapsilosis.Fundação para a Ciência e a Tecnologia (FCT) - SFRH/BD/28341/2006, PDTC/BIO/61112/200

    Prevalence and risk factors of malaria among children in southern highland Rwanda

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increased control has produced remarkable reductions of malaria in some parts of sub-Saharan Africa, including Rwanda. In the southern highlands, near the district capital of Butare (altitude, 1,768 m), a combined community-and facility-based survey on <it>Plasmodium </it>infection was conducted early in 2010.</p> <p>Methods</p> <p>A total of 749 children below five years of age were examined including 545 randomly selected from 24 villages, 103 attending the health centre in charge, and 101 at the referral district hospital. Clinical, parasitological, haematological, and socio-economic data were collected.</p> <p>Results</p> <p><it>Plasmodium falciparum </it>infection (mean multiplicity, 2.08) was identified by microscopy and PCR in 11.7% and 16.7%, respectively; 5.5% of the children had malaria. PCR-based <it>P. falciparum </it>prevalence ranged between 0 and 38.5% in the villages, and was 21.4% in the health centre, and 14.9% in the hospital. Independent predictors of infection included increasing age, low mid-upper arm circumference, absence of several household assets, reported recent intake of artemether-lumefantrine, and chloroquine in plasma, measured by ELISA. Self-reported bed net use (58%) reduced infection only in univariate analysis. In the communities, most infections were seemingly asymptomatic but anaemia was observed in 82% and 28% of children with and without parasitaemia, respectively, the effect increasing with parasite density, and significant also for submicroscopic infections.</p> <p>Conclusions</p> <p><it>Plasmodium falciparum </it>infection in the highlands surrounding Butare, Rwanda, is seen in one out of six children under five years of age. The abundance of seemingly asymptomatic infections in the community forms a reservoir for transmission in this epidemic-prone area. Risk factors suggestive of low socio-economic status and insufficient effectiveness of self-reported bed net use refer to areas of improvable intervention.</p

    The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: occurrence data, distribution maps and bionomic précis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This is the second in a series of three articles documenting the geographical distribution of 41 dominant vector species (DVS) of human malaria. The first paper addressed the DVS of the Americas and the third will consider those of the Asian Pacific Region. Here, the DVS of Africa, Europe and the Middle East are discussed. The continent of Africa experiences the bulk of the global malaria burden due in part to the presence of the <it>An. gambiae </it>complex. <it>Anopheles gambiae </it>is one of four DVS within the <it>An. gambiae </it>complex, the others being <it>An. arabiensis </it>and the coastal <it>An. merus </it>and <it>An. melas</it>. There are a further three, highly anthropophilic DVS in Africa, <it>An. funestus</it>, <it>An. moucheti </it>and <it>An. nili</it>. Conversely, across Europe and the Middle East, malaria transmission is low and frequently absent, despite the presence of six DVS. To help control malaria in Africa and the Middle East, or to identify the risk of its re-emergence in Europe, the contemporary distribution and bionomics of the relevant DVS are needed.</p> <p>Results</p> <p>A contemporary database of occurrence data, compiled from the formal literature and other relevant resources, resulted in the collation of information for seven DVS from 44 countries in Africa containing 4234 geo-referenced, independent sites. In Europe and the Middle East, six DVS were identified from 2784 geo-referenced sites across 49 countries. These occurrence data were combined with expert opinion ranges and a suite of environmental and climatic variables of relevance to anopheline ecology to produce predictive distribution maps using the Boosted Regression Tree (BRT) method.</p> <p>Conclusions</p> <p>The predicted geographic extent for the following DVS (or species/suspected species complex*) is provided for Africa: <it>Anopheles </it>(<it>Cellia</it>) <it>arabiensis</it>, <it>An. </it>(<it>Cel.</it>) <it>funestus*</it>, <it>An. </it>(<it>Cel.</it>) <it>gambiae</it>, <it>An. </it>(<it>Cel.</it>) <it>melas</it>, <it>An. </it>(<it>Cel.</it>) <it>merus</it>, <it>An. </it>(<it>Cel.</it>) <it>moucheti </it>and <it>An. </it>(<it>Cel.</it>) <it>nili*</it>, and in the European and Middle Eastern Region: <it>An. </it>(<it>Anopheles</it>) <it>atroparvus</it>, <it>An. </it>(<it>Ano.</it>) <it>labranchiae</it>, <it>An. </it>(<it>Ano.</it>) <it>messeae</it>, <it>An. </it>(<it>Ano.</it>) <it>sacharovi</it>, <it>An. </it>(<it>Cel.</it>) <it>sergentii </it>and <it>An. </it>(<it>Cel.</it>) <it>superpictus*</it>. These maps are presented alongside a bionomics summary for each species relevant to its control.</p

    Comparative evaluation of carbosulfan- and permethrin-impregnated curtains for preventing house-entry by the malaria vector Anopheles gambiae in Burkina Faso.

    No full text
    Pyrethroid-impregnated bednets and curtains are widely employed to reduce the risk of malaria transmission, but pyrethroid-resistance is becoming more prevalent among malaria vector Anopheles mosquitoes (Diptera: Culicidae). As an alternative treatment for curtains, we assessed carbosulfan (a carbamate insecticide) in comparison with permethrin as the standard pyrethroid, against endophilic female mosquitoes of the Anopheles gambiae Giles complex in a village near Ouagadougou, Burkina Faso. The main criterion evaluated was the impact of curtains (hung inside windows, eaves and doorways) on the number of An. gambiae s.l. females active indoors at night. Light-traps were operated overnight (21.00-06.00 hours beside occupied untreated bednets) to sample mosquitoes in houses fitted with net curtains treated with carbosulfan 0.2 g ai/m2 or permethrin 1 g ai/m2 or untreated, compared with houses without curtains. The treated and untreated curtains significantly reduced the numbers of mosquitoes collected indoors, compared with houses without curtains. Carbosulfan-treated curtains had a highly significantly greater effect than permethrin-treated or untreated curtains, the scale of the difference being estimated as three-fold. However, there was no significant difference between the impact of untreated and permethrin-treated curtains on densities of An. gambiae s.l. trapped indoors. Samples of the An. gambiae complex comprised An. arabiensis Patton and both the S- and M-forms of An. gambiae Giles s.s. Susceptibility tests revealed some resistance to DDT and low frequencies of permethrin-resistance, insufficient to explain the poor performance of permethrin on curtains. Among survivors from the diagnostic dosage of permethrin were some specimens of all three members of the An. gambiae complex, but the kdr resistance mechanism was detected only in the S-form of An. gambiae s.s. Questions arising for further investigation include clarification of resistance mechanisms in, and foraging behaviour of, each member of the An. gambiae complex in this situation and the need to decide whether carbosulfan-treated curtains are acceptably safe for use to reduce risks of malaria transmission

    Insecticide treated bednets: A review

    Get PDF
    The functioning and efficacy of Insecticide Treated Nets (ITNs) in controlling malaria are discussed in the present review. ITNs Insecticide Treated Nets (ITNs) have been shown to have a beneficial impact in reducing malaria mortality and morbidity in children. However, a few issues are still unresolved: for instance the short and long term effects of an artificially induced reduction in the intensity of malaria transmission on the immune system and the mortality of children is not entirely understood; further studies are needed on whether the spread of resistance to pyrethroids, which is the only class of insecticide currently recommended on nets, affects the effectiveness of ITNs so that resistance to these insecticides would constitutes a serious threat for the success of the malaria vector control programs. Lastly, the economic aspects are presented. The main problem is to find a way for a sustainable implementation of this methodology, that includes purchasing new bednets, delivery and the regular re-impregnation of the existing nets. Free delivery and retreatment in poor countries is not only more equitable but also more efficient than marketing methods

    Insecticide treated bednets: A review

    No full text
    The functioning and efficacy of Insecticide Treated Nets (ITNs) in controlling malaria are discussed in the present review. ITNs Insecticide Treated Nets (ITNs) have been shown to have a beneficial impact in reducing malaria mortality and morbidity in children. However, a few issues are still unresolved: for instance the short and long term effects of an artificially induced reduction in the intensity of malaria transmission on the immune system and the mortality of children is not entirely understood; further studies are needed on whether the spread of resistance to pyrethroids, which is the only class of insecticide currently recommended on nets, affects the effectiveness of ITNs so that resistance to these insecticides would constitutes a serious threat for the success of the malaria vector control programs. Lastly, the economic aspects are presented. The main problem is to find a way for a sustainable implementation of this methodology, that includes purchasing new bednets, delivery and the regular re-impregnation of the existing nets. Free delivery and retreatment in poor countries is not only more equitable but also more efficient than marketing methods

    The pyrethroid knock-down resistance gene in the Anopheles gambiae complex in Mali and further indication of incipient speciation within An. gambiae s.s.

    No full text
    In Mali the Anopheles gambiae complex consists of An. arabiensis and Mopti, Savanna and Bamako chromosomal forms of An. gambiae s.s. Previous chromosomal data suggests a complete reproductive isolation among these forms. Sequence analysis of rDNA regions led to the characterization of two molecular forms of An. gambiae, named M-form and S-form, which in Mali correspond to Mopti and to Savanna/Bamako, respectively, while it has failed so far to show any molecular difference between Savanna and Bamako. The population structure of An. gambiae s.l. was analysed in three villages in the Bamako and Sikasso areas of Mali and the frequency of pyrethroid resistance of the knock-down resistance (kdr) type was calculated. The results show that the kdr allele is associated only with the Savanna form populations and absent in sympatric and synchronous populations of Bamako, Mopti and An. arabiensis. This is the first molecular indication of barriers to gene flow between the Bamako and Savanna chromosomal forms. Moreover, analyses of specimens collected in the Bamako area in 1987 show that the kdr allele was already present in the Savanna population at that time, and that the frequency of this allele has gradually increased since then
    corecore