21 research outputs found

    Distinct regulation of c-myb gene expression by HoxA9, Meis1 and Pbx proteins in normal hematopoietic progenitors and transformed myeloid cells

    Get PDF
    The proto-oncogenic protein c-Myb is an essential regulator of hematopoiesis and is frequently deregulated in hematological diseases such as lymphoma and leukemia. To gain insight into the mechanisms underlying the aberrant expression of c-Myb in myeloid leukemia, we analyzed and compared c-myb gene transcriptional regulation using two cell lines modeling normal hematopoietic progenitor cells (HPCs) and transformed myelomonocytic blasts. We report that the transcription factors HoxA9, Meis1, Pbx1 and Pbx2 bind in vivo to the c-myb locus and maintain its expression through different mechanisms in HPCs and leukemic cells. Our analysis also points to a critical role for Pbx2 in deregulating c-myb expression in murine myeloid cells cotransformed by the cooperative activity of HoxA9 and Meis1. This effect is associated with an intronic positioning of epigenetic marks and RNA polymerase II binding in the orthologous region of a previously described alternative promoter for c-myb. Taken together, our results could provide a first hint to explain the abnormal expression of c-myb in leukemic cells

    Comparative Expression of NFkappaB Proteins in Melanocytes of Normal Skin vs. Benign Intradermal Naevus and Human Metastatic Melanoma Biopsies

    No full text
    Nuclear factor kappa B (NFkappaB) is an essential regulator of gene transcription for hundreds of genes, including many critically involved in apoptosis. NFkappaB complexes containing cRel generally activate pro-apoptotic genes, while those with RelA activate anti-apoptotic genes. We have previously shown that NFkappaB binding by RelA is constitutively elevated in human metastatic melanoma cultures relative to normal melanocytes. Here we extended our investigation to immunohistochemical analysis of human tissue biopsies. We found that RelA expression is significantly elevated in melanocytes of human naevi and melanomas relative to normal skin, but expression of its inhibitor IkappaB-alpha is significantly lower in metastatic melanomas than in intradermal naevi. Antibodies specific for the nuclear localization signal of RelA also showed significantly increased staining in metastatic melanoma biopsies. Notably, in melanomas and in naevi, we also found that RelA is phosphorylated at serine 529, and this activated form accumulates in the nuclei of melanomas. This suggests that increased expression and phosphorylation of RelA occurs at the stage of the benign naevus, but IkappaB-alpha is able to sequester RelA in the cytoplasm and regulate RelA transcriptional transactivation. We also found that antibodies against cRel show a progressive increase in staining from naevi to melanoma. However, staining for IkappaB-epsilon, which primarily inhibits the nuclear localization of cRel was also progressively increased, and cRel expression was predominantly cytoplasmic in melanomas. These results confirm that the altered expression of RelA found in metastatic melanoma cells in tissue culture is relevant to human tumors and offer new insights into the deregulation of NFkappaB signaling

    Frequencies of CCR5-D32, CCR2-64I and SDF1-3’A mutations in Human Immunodeficiency Virus (HIV) seropositive subjects and seronegative individuals from the state of Pará in Brazilian Amazonia

    No full text
    The distribution of genetic polymorphisms of chemokine receptors CCR5-delta32, CCR2-64I and chemokine (SDF1-3’A) mutations were studied in 110 Human Immunodeficiency Virus type 1 (HIV-1) seropositive individuals (seropositive group) and 139 seronegative individuals (seronegative group) from the population of the northern Brazilian city of Belém which is the capital of the state of Pará in the Brazilian Amazon. The CCR5-delta32 mutation was found in the two groups at similar frequencies, i.e. 2.2% for the seronegative group and 2.7% for the seropositive group. The frequencies of the SDF1-3’A mutation were 21.0% for the seronegative group and 15.4% for the seropositive group, and the CCR2-64I allele was found at frequencies of 12.5% for the seronegative group and 5.4% for the seropositive group. Genotype distributions were consistent with Hardy-Weinberg expectations in both groups, suggesting that none of the three mutations has a detectable selective effect. Difference in the allelic and genotypic frequencies was statistically significant for the CCR2 locus, the frequency in the seronegative group being twice that found in the seropositive group. This finding may indicate a protective effect of the CCR2-64I mutation in relation to HIV transmission. However, considering that the CCR2-64I mutation has been more strongly associated with a decreased risk for progression for AIDS than to the resistance to the HIV infection, this could reflect an aspect of population structure or a Type I error
    corecore