5,278 research outputs found

    Automatic and semi-automatic extraction of curvilinear features from SAR images

    Get PDF
    Extraction of curvilinear features from synthetic aperture radar (SAR) images is important for automatic recognition of various targets, such as fences, surrounding the buildings. The bright pixels which constitute curvilinear features in SAR images are usually disrupted and also degraded by high amount of speckle noise which makes extraction of such curvilinear features very difficult. In this paper an approach for the extraction of curvilinear features from SAR images is presented. The proposed approach is based on searching the curvilinear features as an optimum unidirectional path crossing over the vertices of the features determined after a despeckling operation. The proposed method can be used in a semi-automatic mode if the user supplies the starting vertex or in an automatic mode otherwise. In the semi-automatic mode, the proposed method produces reasonably accurate real-time solutions for SAR images

    Adaptive polyphase subband decomposition structures for image compression

    Get PDF
    Cataloged from PDF version of article.Subband decomposition techniques have been extensively used for data coding and analysis. In most filter banks, the goal is to obtain subsampled signals corresponding to different spectral regions of the original data. However, this approach leads to various artifacts in images having spatially varying characteristics, such as images containing text, subtitles, or sharp edges. In this paper, adaptive filter banks with perfect reconstruction property are presented for such images. The filters of the decomposition structure which can be either linear or nonlinear vary according to the nature of the signal. This leads to improved image compression ratios. Simulation examples are presented

    A 2-D orientation-adaptive prediction filter in lifting structures for image coding

    Get PDF
    Cataloged from PDF version of article.Lifting-style implementations of wavelets are widely used in image coders. A two-dimensional (2-D) edge adaptive lifting structure, which is similar to Daubechies 5/3 wavelet, is presented. The 2-D prediction filter predicts the value of the next polyphase component according to an edge orientation estimator of the image. Consequently, the prediction domain is allowed to rotate ±45° in regions with diagonal gradient. The gradient estimator is computationally inexpensive with additional costs of only six subtractions per lifting instruction, and no multiplications are required. © 2006 IEEE

    AM/FM signal estimation with micro-segmentation and polynomial fit

    Get PDF
    Cataloged from PDF version of article.Amplitude and phase estimation of AM/FM signals with parametric polynomial representation require the polynomial orders for phase and amplitude to be known. But in reality, they are not known and have to be estimated. A well-known method for estimation is the higher-order ambiguity function (HAF) or its variants. But the HAF method has several reported drawbacks such as error propagation and slowly varying or even constant amplitude assumption. Especially for the long duration time-varying signals like AM/FM signals, which require high orders for the phase and amplitude, computational load is very heavy due to nonlinear optimization involving many variables. This paper utilizes a micro-segmentation approach where the length of segment is selected such that the amplitude and instantaneous frequency (IF) is constant over the segment. With this selection first, the amplitude and phase estimates for each micro-segment are obtained optimally in the LS sense, and then, these estimates are concatenated to obtain the overall amplitude and phase estimates. The initial estimates are not optimal but sufficiently close to the optimal solution for subsequent processing. Therefore, by using the initial estimates, the overall polynomial orders for the amplitude and phase are estimated. Using estimated orders, the initial amplitude and phase functions are fitted to the polynomials to obtain the final signal. The method does not use any multivariable nonlinear optimization and is efficient in the sense that the MSE performance is close enough to the Cramer–Rao bound. Simulation examples are presented

    Projections Onto Convex Sets (POCS) Based Optimization by Lifting

    Get PDF
    Two new optimization techniques based on projections onto convex space (POCS) framework for solving convex and some non-convex optimization problems are presented. The dimension of the minimization problem is lifted by one and sets corresponding to the cost function are defined. If the cost function is a convex function in R^N the corresponding set is a convex set in R^(N+1). The iterative optimization approach starts with an arbitrary initial estimate in R^(N+1) and an orthogonal projection is performed onto one of the sets in a sequential manner at each step of the optimization problem. The method provides globally optimal solutions in total-variation, filtered variation, l1, and entropic cost functions. It is also experimentally observed that cost functions based on lp, p<1 can be handled by using the supporting hyperplane concept

    A video-based text and equation editor for LaTeX

    Get PDF
    Cataloged from PDF version of article.In this paper we present a video based text and equation editor for LaTeX. The system recognizes what is written onto paper and generates the LaTeX code. Text and equations are written on a regular paper using a board marker, and a USB camera attached to a computer is used to capture and record the pen-tip positions in each consecutive image frame. Characters and symbols are represented as separate finite state machines (FSMs). They are written in an isolated manner and they are recognized on-line using the FSMs. In the last step, LaTeX code corresponding to recognized characters and symbols is generated. (c) 2007 Elsevier Ltd. All rights reserved

    Compressive sensing using the modified entropy functional

    Get PDF
    Cataloged from PDF version of article.In most compressive sensing problems, 1 norm is used during the signal reconstruction process. In this article, a modified version of the entropy functional is proposed to approximate the 1 norm. The proposed modified version of the entropy functional is continuous, differentiable and convex. Therefore, it is possible to construct globally convergent iterative algorithms using Bregman’s row-action method for compressive sensing applications. Simulation examples with both 1D signals and images are presented. © 2013 Elsevier Inc. All rights reserved
    corecore