83 research outputs found

    Combining gemcitabine, oxaliplatin and capecitabine (GEMOXEL) for patients with advanced pancreatic carcinoma (APC): a phase I/II trial

    Get PDF
    Background: Gemcitabine remains the mainstay of palliative treatment of advanced pancreatic carcinoma (APC). Adding capecitabine or a platinum derivative each significantly prolonged survival in recent meta-analyses. The purpose of this study was to determine dose, safety and preliminary efficacy of a first-line regimen combining all three classes of active cytotoxic drugs in APC. Patients and methods: Chemotherapy-naive patients with locally advanced or metastatic, histologically proven adenocarcinoma of the pancreas were treated with a 21-day regimen of gemcitabine [1000 mg/m2 day (d) 1, d8], escalating doses of oxaliplatin (80-130 mg/m2 d1) and capecitabine (650-800 mg/m2 b.i.d. d1-d14). The recommended dose (RD), determined in the phase I part of the study by interpatient dose escalation in cohorts of three to six patients, was further studied in a two-stage phase II part with the primary end point of response rate by RECIST criteria. Results: Forty-five patients were treated with a total of 203 treatment cycles. Thrombocytopenia and diarrhea were the toxic effects limiting the dose to an RD of gemcitabine 1000 mg/m2 d1, d8; oxaliplatin 130 mg/m2 d1 and capecitabine 650 mg/m2 b.i.d. d1-14. Central independent radiological review showed partial remissions in 41% [95% confidence interval (CI) 26% to 56%] of patients and disease stabilization in 37% (95% CI 22% to 52%) of patients. Conclusion: This triple combination is feasible and, by far, met the predefined efficacy criteria warranting further investigation

    Limited predictive value of FDG-PET for response assessment in the preoperative treatment of esophageal cancer : results of a prospective multi-center trial (SAKK 75/02)

    Get PDF
    BACKGROUND: Only responding patients benefit from preoperative therapy for locally advanced esophageal carcinoma. Early detection of non-responders may avoid futile treatment and delayed surgery. PATIENTS AND METHODS: In a multi-center phase ll trial, patients with resectable, locally advanced esophageal carcinoma were treated with 2 cycles of induction chemotherapy followed by chemoradiotherapy (CRT) and surgery. Positron emission tomography with 2[fluorine-18]fluoro-2-deoxy-d-glucose (FDG-PET) was performed at baseline and after induction chemotherapy. The metabolic response was correlated with tumor regression grade (TRG). A decrease in FDG tumor uptake of less than 40% was prospectively hypothesized as a predictor for histopathological non-response (TRG < 2) after CRT. RESULTS: 45 patients were included. The median decrease in FDG tumor uptake after chemotherapy correlated well with TRG after completion of CRT (p = 0.021). For an individual patient, less than 40% decrease in FDG tumor uptake after induction chemotherapy predicted histopathological non-response after completion of CRT, with a sensitivity of 68% and a specificity of 52% (positive predictive value 58%, negative predictive value 63%). CONCLUSIONS: Metabolic response correlated with histopathology after preoperative therapy. However, FDG-PET did not predict non-response after induction chemotherapy with sufficient clinical accuracy to justify withdrawal of subsequent CRT and selection of patients to proceed directly to surgery

    Application of the density dependent hadron field theory to neutron star matter

    Get PDF
    The density dependent hadron field (DDRH) theory, previously applied to isospin nuclei and hypernuclei is used to describe β\beta-stable matter and neutron stars under consideration of the complete baryon octet. The meson-hyperon vertices are derived from Dirac-Brueckner calculations of nuclear matter and extended to hyperons. We examine properties of density dependent interactions derived from the Bonn A and from the Groningen NN potential as well as phenomenological interactions. The consistent treatment of the density dependence introduces rearrangement terms in the expression for the baryon chemical potential. This leads to a more complex condition for the β\beta-equilibrium compared to standard relativistic mean field (RMF) approaches. We find a strong dependence of the equation of state and the particle distribution on the choice of the vertex density dependence. Results for neutron star masses and radii are presented. We find a good agreement with other models for the maximum mass. Radii are smaller compared to RMF models and indicate a closer agreement with results of non-relativistic Brueckner calculations.Comment: 28 pages, 11 figure

    Density dependent hadron field theory for neutron stars with antikaon condensates

    Get PDF
    We investigate K−K^- and Kˉ0\bar K^0 condensation in β\beta-equilibrated hyperonic matter within a density dependent hadron field theoretical model. In this model, baryon-baryon and (anti)kaon-baryon interactions are mediated by the exchange of mesons. Density dependent meson-baryon coupling constants are obtained from microscopic Dirac Brueckner calculations using Groningen and Bonn A nucleon-nucleon potential. It is found that the threshold of antikaon condensation is not only sensitive to the equation of state but also to antikaon optical potential depth. Only for large values of antikaon optical potential depth, K−K^- condensation sets in even in the presence of negatively charged hyperons. The threshold of Kˉ0\bar K^0 condensation is always reached after K−K^- condensation. Antikaon condensation makes the equation of state softer thus resulting in smaller maximum mass stars compared with the case without any condensate.Comment: 20 pages, 7 figures; final version to appear in Physical Review

    Gastrin-releasing peptide receptor-based targeting using bombesin analogues is superior to metabolism-based targeting using choline for in vivo imaging of human prostate cancer xenografts

    Get PDF
    Purpose: Prostate cancer (PC) is a major health problem. Overexpression of the gastrin-releasing peptide receptor (GRPR) in PC, but not in the hyperplastic prostate, provides a promising target for staging and monitoring of PC. Based on the assumption that cancer cells have increased metabolic activity, metabolism-based tracers are also being used for PC imaging. We compared GRPR-based targeting using the68Ga-labelled bombesin analogue AMBA with metabolism-based tar

    Illuminating the life of GPCRs

    Get PDF
    The investigation of biological systems highly depends on the possibilities that allow scientists to visualize and quantify biomolecules and their related activities in real-time and non-invasively. G-protein coupled receptors represent a family of very dynamic and highly regulated transmembrane proteins that are involved in various important physiological processes. Since their localization is not confined to the cell surface they have been a very attractive "moving target" and the understanding of their intracellular pathways as well as the identified protein-protein-interactions has had implications for therapeutic interventions. Recent and ongoing advances in both the establishment of a variety of labeling methods and the improvement of measuring and analyzing instrumentation, have made fluorescence techniques to an indispensable tool for GPCR imaging. The illumination of their complex life cycle, which includes receptor biosynthesis, membrane targeting, ligand binding, signaling, internalization, recycling and degradation, will provide new insights into the relationship between spatial receptor distribution and function. This review covers the existing technologies to track GPCRs in living cells. Fluorescent ligands, antibodies, auto-fluorescent proteins as well as the evolving technologies for chemical labeling with peptide- and protein-tags are described and their major applications concerning the GPCR life cycle are presented
    • …
    corecore