82 research outputs found

    Guided assembly of nanoparticles on electrostatically charged nanocrystalline diamond thin films

    Get PDF
    We apply atomic force microscope for local electrostatic charging of oxygen-terminated nanocrystalline diamond (NCD) thin films deposited on silicon, to induce electrostatically driven self-assembly of colloidal alumina nanoparticles into micro-patterns. Considering possible capacitive, sp2 phase and spatial uniformity factors to charging, we employ films with sub-100 nm thickness and about 60% relative sp2 phase content, probe the spatial material uniformity by Raman and electron microscopy, and repeat experiments at various positions. We demonstrate that electrostatic potential contrast on the NCD films varies between 0.1 and 1.2 V and that the contrast of more than ±1 V (as detected by Kelvin force microscopy) is able to induce self-assembly of the nanoparticles via coulombic and polarization forces. This opens prospects for applications of diamond and its unique set of properties in self-assembly of nano-devices and nano-systems

    Pattern recognition of estradiol, testosterone and dihydrotestosterone in children's saliva samples using stochastic microsensors

    Get PDF
    Stochastic microsensors based on diamond paste and three types of electroactive materials (maltodextrin (MD), α-cyclodextrin (α-CD) and 5,10,15,20-tetraphenyl-21H,23H porphyrin (P)) were developed for the assay of estradiol (E2), testosterone (T2) and dihydrotestosterone (DHT) in children's saliva. The main advantage of utilization of such tools is the possibility to identify and quantify all three hormones within minutes in small volumes of childen's saliva. The limits of quantification obtained for DHT, T2, and E2 (1 fmol/L for DHT, 1 pmol/L for T2, and 66 fmol/L for E2) determined using the proposed tools allows the utilization of these new methods with high reliability for the screening of saliva samples from children. This new method proposed for the assay of the three hormones overcomes the limitations (regarding limits of determination) of ELISA method which is the standard method used in clinical laboratories for the assay of DHT, T2, and E2 in saliva samples. The main feature of its utilization for children's saliva is to identify earlier problems related to early puberty and obesity

    Age, gender, and cancer but not neurodegenerative and cardiovascular diseases strongly modulate systemic effect of the Apolipoprotein E4 allele on lifespan

    Get PDF
    Enduring interest in the Apolipoprotein E (ApoE) polymorphism is ensured by its evolutionary-driven uniqueness in humans and its prominent role in geriatrics and gerontology. We use large samples of longitudinally followed populations from the Framingham Heart Study (FHS) original and offspring cohorts and the Long Life Family Study (LLFS) to investigate gender-specific effects of the ApoE4 allele on human survival in a wide range of ages from midlife to extreme old ages, and the sensitivity of these effects to cardiovascular disease (CVD), cancer, and neurodegenerative disorders (ND). The analyses show that women's lifespan is more sensitive to the e4 allele than men's in all these populations. A highly significant adverse effect of the e4 allele is limited to women with moderate lifespan of about 70 to 95 years in two FHS cohorts and the LLFS with relative risk of death RR = 1.48 (p = 3.6×10(−6)) in the FHS cohorts. Major human diseases including CVD, ND, and cancer, whose risks can be sensitive to the e4 allele, do not mediate the association of this allele with lifespan in large FHS samples. Non-skin cancer non-additively increases mortality of the FHS women with moderate lifespans increasing the risks of death of the e4 carriers with cancer two-fold compared to the non-e4 carriers, i.e., RR = 2.07 (p = 5.0×10(−7)). The results suggest a pivotal role of non-sex-specific cancer as a nonlinear modulator of survival in this sample that increases the risk of death of the ApoE4 carriers by 150% (p = 5.3×10(−8)) compared to the non-carriers. This risk explains the 4.2 year shorter life expectancy of the e4 carriers compared to the non-carriers in this sample. The analyses suggest the existence of age- and gender-sensitive systemic mechanisms linking the e4 allele to lifespan which can non-additively interfere with cancer-related mechanisms

    Synthesis, structure, and opto-electronic properties of organic-based nanoscale heterojunctions

    Get PDF
    Enormous research effort has been put into optimizing organic-based opto-electronic systems for efficient generation of free charge carriers. This optimization is mainly due to typically high dissociation energy (0.1-1 eV) and short diffusion length (10 nm) of excitons in organic materials. Inherently, interplay of microscopic structural, chemical, and opto-electronic properties plays crucial role. We show that employing and combining advanced scanning probe techniques can provide us significant insight into the correlation of these properties. By adjusting parameters of contact- and tapping-mode atomic force microscopy (AFM), we perform morphologic and mechanical characterizations (nanoshaving) of organic layers, measure their electrical conductivity by current-sensing AFM, and deduce work functions and surface photovoltage (SPV) effects by Kelvin force microscopy using high spatial resolution. These data are further correlated with local material composition detected using micro-Raman spectroscopy and with other electronic transport data. We demonstrate benefits of this multi-dimensional characterizations on (i) bulk heterojunction of fully organic composite films, indicating differences in blend quality and component segregation leading to local shunts of photovoltaic cell, and (ii) thin-film heterojunction of polypyrrole (PPy) electropolymerized on hydrogen-terminated diamond, indicating covalent bonding and transfer of charge carriers from PPy to diamond

    Enhanced Growth and Osteogenic Differentiation of Human Osteoblast-Like Cells on Boron-Doped Nanocrystalline Diamond Thin Films

    Get PDF
    Intrinsic nanocrystalline diamond (NCD) films have been proven to be promising substrates for the adhesion, growth and osteogenic differentiation of bone-derived cells. To understand the role of various degrees of doping (semiconducting to metallic-like), the NCD films were deposited on silicon substrates by a microwave plasma-enhanced CVD process and their boron doping was achieved by adding trimethylboron to the CH4:H2 gas mixture, the B∶C ratio was 133, 1000 and 6700 ppm. The room temperature electrical resistivity of the films decreased from >10 MΩ (undoped films) to 55 kΩ, 0.6 kΩ, and 0.3 kΩ (doped films with 133, 1000 and 6700 ppm of B, respectively). The increase in the number of human osteoblast-like MG 63 cells in 7-day-old cultures on NCD films was most apparent on the NCD films doped with 133 and 1000 ppm of B (153,000±14,000 and 152,000±10,000 cells/cm2, respectively, compared to 113,000±10,000 cells/cm2 on undoped NCD films). As measured by ELISA per mg of total protein, the cells on NCD with 133 and 1000 ppm of B also contained the highest concentrations of collagen I and alkaline phosphatase, respectively. On the NCD films with 6700 ppm of B, the cells contained the highest concentration of focal adhesion protein vinculin, and the highest amount of collagen I was adsorbed. The concentration of osteocalcin also increased with increasing level of B doping. The cell viability on all tested NCD films was almost 100%. Measurements of the concentration of ICAM-1, i.e. an immunoglobuline adhesion molecule binding inflammatory cells, suggested that the cells on the NCD films did not undergo significant immune activation. Thus, the potential of NCD films for bone tissue regeneration can be further enhanced and tailored by B doping and that B doping up to metallic-like levels is not detrimental for cells

    Genetic Signatures of Exceptional Longevity in Humans

    Get PDF
    Like most complex phenotypes, exceptional longevity is thought to reflect a combined influence of environmental (e.g., lifestyle choices, where we live) and genetic factors. To explore the genetic contribution, we undertook a genome-wide association study of exceptional longevity in 801 centenarians (median age at death 104 years) and 914 genetically matched healthy controls. Using these data, we built a genetic model that includes 281 single nucleotide polymorphisms (SNPs) and discriminated between cases and controls of the discovery set with 89% sensitivity and specificity, and with 58% specificity and 60% sensitivity in an independent cohort of 341 controls and 253 genetically matched nonagenarians and centenarians (median age 100 years). Consistent with the hypothesis that the genetic contribution is largest with the oldest ages, the sensitivity of the model increased in the independent cohort with older and older ages (71% to classify subjects with an age at death>102 and 85% to classify subjects with an age at death>105). For further validation, we applied the model to an additional, unmatched 60 centenarians (median age 107 years) resulting in 78% sensitivity, and 2863 unmatched controls with 61% specificity. The 281 SNPs include the SNP rs2075650 in TOMM40/APOE that reached irrefutable genome wide significance (posterior probability of association = 1) and replicated in the independent cohort. Removal of this SNP from the model reduced the accuracy by only 1%. Further in-silico analysis suggests that 90% of centenarians can be grouped into clusters characterized by different “genetic signatures” of varying predictive values for exceptional longevity. The correlation between 3 signatures and 3 different life spans was replicated in the combined replication sets. The different signatures may help dissect this complex phenotype into sub-phenotypes of exceptional longevity

    Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease

    Get PDF
    BACKGROUND: Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes. METHODS: We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization. RESULTS: During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events. CONCLUSIONS: Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)

    Carrier generation within the surface region of hydrogenated thin film polycrystalline diamond

    No full text
    Low temperature Hall effect measurements made on diamond films subjected to a hydrogenation process, such that the near surface region becomes p-type without the addition of conventional dopant atoms, are reported. The carrier concentration within the temperature range 10-300 K does not change as expected for most films, actually increasing as the temperature falls. However, polished films display more conventional behaviour in that the carrier concentration falls with falling temperature. A model involving carrier transport within both valance and impurity bands can be considered to explain these observations, leading to the suggestion that the hydrogenation process is capable of creating acceptor states with an activation energy within the range of 10-40 meV. © 2001 Elsevier Science B.V. All rights reserved

    Influence of the environment on the surface conductivity of chemical vapor deposition diamond

    No full text
    The influence of differing chemical environments on the surface conductive properties of chemical vapor deposition (CVD) diamond films has been explored. Only small changes in the insulating character of the diamond surface is observed when surfaces freshly hydrogenated in a microwave plasma are exposed in-situ to water vapour or a range of common gases in separate experiments. However, a large increase in surface conductivity is seen if the surface is first exposed to water vapour and then other gasses including oxygen, carbon dioxide and formic acid. Conductivity changes are also observed in solution of differing pH, although irretrievable loss of the conductive phase is observed if the diamond is heated in alkaline solution. The applicability of recent models in explaining the observations is considered. © 2002 Elsevier Science B.V. All rights reserved
    corecore