27 research outputs found

    Nurse-patient interaction and communication: a systematic literature review

    Full text link
    Aim: The purpose of this review is to describe the use and definitions of the concepts of nurse-patient interaction and nurse-patient communication in nursing literature. Furthermore, empirical findings of nurse-patient communication research will be presented, and applied theories will be shown. Method: An integrative literature search was executed. The total number of relevant citations found was 97. The search results were reviewed, and key points were extracted in a standardized form. Extracts were then qualitatively summarized according to relevant aspects and categories for the review. Results: The relation of interaction and communication is not clearly defined in nursing literature. Often the terms are used interchangeably or synonymously, and a clear theoretical definition is avoided or rather implicit. Symbolic interactionism and classic sender-receiver models were by far the most referred to models. Compared to the use of theories of adjacent sciences, the use of original nursing theories related to communication is rather infrequent. The articles that try to clarify the relation of both concepts see communication as a special or subtype of interaction. Conclusion: The included citations all conclude that communication skills can be learned to a certain degree. Involvement of patients and their role in communication often is neglected by authors. Considering the mutual nature of communication, patients’ share in conversation should be taken more into consideration than it has been until now. Nursing science has to integrate its own theories of nursing care with theories of communication and interaction from other scientific disciplines like sociology

    The mammals of Angola

    Get PDF
    Scientific investigations on the mammals of Angola started over 150 years ago, but information remains scarce and scattered, with only one recent published account. Here we provide a synthesis of the mammals of Angola based on a thorough survey of primary and grey literature, as well as recent unpublished records. We present a short history of mammal research, and provide brief information on each species known to occur in the country. Particular attention is given to endemic and near endemic species. We also provide a zoogeographic outline and information on the conservation of Angolan mammals. We found confirmed records for 291 native species, most of which from the orders Rodentia (85), Chiroptera (73), Carnivora (39), and Cetartiodactyla (33). There is a large number of endemic and near endemic species, most of which are rodents or bats. The large diversity of species is favoured by the wide range of habitats with contrasting environmental conditions, while endemism tends to be associated with unique physiographic settings such as the Angolan Escarpment. The mammal fauna of Angola includes 2 Critically Endangered, 2 Endangered, 11 Vulnerable, and 14 Near-Threatened species at the global scale. There are also 12 data deficient species, most of which are endemics or near endemics to the countryinfo:eu-repo/semantics/publishedVersio

    In situ X-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics

    Get PDF
    Pressure-driven shock waves in solid materials can cause extreme damage and deformation. Understanding this deformation and the associated defects that are created in the material is crucial in the study of a wide range of phenomena, including planetary formation and asteroid impact sites, the formation of interstellar dust clouds, ballistic penetrators, spacecraft shielding and ductility in high-performance ceramics. At the lattice level, the basic mechanisms of plastic deformation are twinning (whereby crystallites with a mirror-image lattice form) and slip (whereby lattice dislocations are generated and move), but determining which of these mechanisms is active during deformation is challenging. Experiments that characterized lattice defects have typically examined the microstructure of samples after deformation, and so are complicated by post-shock annealing and reverberations. In addition, measurements have been limited to relatively modest pressures (less than 100 gigapascals). In situ X-ray diffraction experiments can provide insights into the dynamic behaviour of materials, but have only recently been applied to plasticity during shock compression and have yet to provide detailed insight into competing deformation mechanisms. Here we present X-ray diffraction experiments with femtosecond resolution that capture in situ, lattice-level information on the microstructural processes that drive shock-wave-driven deformation. To demonstrate this method we shock-compress the body-centred-cubic material tantalum-an important material for high-energy-density physics owing to its high shock impedance and high X-ray opacity. Tantalum is also a material for which previous shock compression simulations and experiments have provided conflicting information about the dominant deformation mechanism. Our experiments reveal twinning and related lattice rotation occurring on the timescale of tens of picoseconds. In addition, despite the common association between twinning and strong shocks, we find a transition from twinning to dislocation-slip-dominated plasticity at high pressure (more than 150 gigapascals), a regime that recovery experiments cannot accurately access. The techniques demonstrated here will be useful for studying shock waves and other high-strain-rate phenomena, as well as a broad range of processes induced by plasticity

    Drivers of leopard (Panthera pardus) habitat use and relative abundance in Africa's largest transfrontier conservation area

    No full text
    Transfrontier conservation areas (TFCAs) have the potential to provide havens for large carnivores while preserving connectivity across wider mixed-use landscapes. However, information on the status of species in such landscapes is lacking, despite being a prerequisite for effective conservation planning. We contribute information to this gap for leopard (Panthera pardus) in Africa, where the species is facing severe range contractions, using data from transect surveys of a 30,000km2 area across Botswana and Zimbabwe in the Kavango-Zambezi (KAZA) TFCA. We used occupancy models to assess how biotic, anthropogenic, and management variables influence leopard habitat use, and N-mixture models to identify variables influencing the species' relative abundance. Leopard were detected in 184 out of 413 sampling units of 64km2; accounting for imperfect detection resulted in mean detection probability = 0.24 (SD = 0.06) and mean probability of site use = 0.89 (SD = 0.20). Habitat use was positively influenced by prey availability and high protection. Relative abundance was best predicted by trophy hunting, which had a negative influence, while abundance was positively associated with high protection and availability of steenbok. Our findings suggest that securing prey populations should be a priority in conservation planning for leopard in Africa, and underline the necessity of preserving highly-protected areas within mixed-use landscapes as strongholds for large carnivores. Our findings also support calls for better assessment of leopard population density in trophy hunting areas, and illustrate the value of N-mixture models to identify factors influencing relative abundance of large carnivores

    Temporal partitioning and spatiotemporal avoidance among large carnivores in a human-impacted African landscape

    No full text
    Africa is home to some of the world’s most functionally diverse guilds of large carnivores. However, they are increasingly under threat from anthropogenic pressures that may exacerbate already intense intra-guild competition. Understanding the coexistence mechanisms employed by these species in human-impacted landscapes could help shed light on some of the more subtle ways in which humans may impact wildlife populations, and inform multi-species conservation planning. We used camera trap data from Tanzania’s Ruaha-Rungwa landscape to explore temporal and spatiotemporal associations between members of an intact East African large carnivore guild, and determine how these varied across gradients of anthropogenic impact and protection. All large carnivores except African wild dog (Lycaon pictus) exhibited predominantly nocturnal road-travel behaviour. Leopard (Panthera pardus) appeared to employ minor temporal avoidance of lion (Panthera leo) in all sites except those where human impacts were highest, suggesting that leopard may have been freed up from avoidance of lion in areas where the dominant competitor was less abundant, or that the need for leopard to avoid humans outweighed the need to avoid sympatric competitors. Lion appeared to modify their activity patterns to avoid humans in the most impacted areas. We also found evidence of avoidance and attraction among large carnivores: lion and spotted hyaena (Crocuta crocuta) followed leopard; leopard avoided lion; spotted hyaena followed lion; and lion avoided spotted hyaena. Our findings suggest that large carnivores in Ruaha-Rungwa employ fine-scale partitioning mechanisms to facilitate coexistence with both sympatric species and humans, and that growing human pressures may interfere with these behaviours

    Temporal partitioning and spatiotemporal avoidance among large carnivores in a human-impacted African landscape

    Get PDF
    Africa is home to some of the world’s most functionally diverse guilds of large carnivores. However, they are increasingly under threat from anthropogenic pressures that may exacerbate already intense intra-guild competition. Understanding the coexistence mechanisms employed by these species in human-impacted landscapes could help shed light on some of the more subtle ways in which humans may impact wildlife populations, and inform multi-species conservation planning. We used camera trap data from Tanzania’s Ruaha-Rungwa landscape to explore temporal and spatiotemporal associations between members of an intact East African large carnivore guild, and determine how these varied across gradients of anthropogenic impact and protection. All large carnivores except African wild dog (Lycaon pictus) exhibited predominantly nocturnal road-travel behaviour. Leopard (Panthera pardus) appeared to employ minor temporal avoidance of lion (Panthera leo) in all sites except those where human impacts were highest, suggesting that leopard may have been freed up from avoidance of lion in areas where the dominant competitor was less abundant, or that the need for leopard to avoid humans outweighed the need to avoid sympatric competitors. Lion appeared to modify their activity patterns to avoid humans in the most impacted areas. We also found evidence of avoidance and attraction among large carnivores: lion and spotted hyaena (Crocuta crocuta) followed leopard; leopard avoided lion; spotted hyaena followed lion; and lion avoided spotted hyaena. Our findings suggest that large carnivores in Ruaha-Rungwa employ fine-scale partitioning mechanisms to facilitate coexistence with both sympatric species and humans, and that growing human pressures may interfere with these behaviours
    corecore