553 research outputs found

    Thin films of Ruthenium Phthalocyanine complexes

    Get PDF
    Four new ruthenium phthalocyanine complexes bearing axial ligands with thioacetate groups that facilitate thin film formation on gold surfaces are presented. Scanning tunnelling microscopy (STM) images and surface coverage data obtained by solution inductively coupled plasma mass spectrometry (ICP-MS) experiments show that peripheral and axial ligand substituents on the complexes have a significant effect on their surface coverage. A laser ablation ICP-MS technique that provides information about thin films across macro-sized areas is described here for the first time. Using the technique, the maximum surface coverage of a ruthenium phthalocyanine complex was found to occur within one minute of gold substrate immersion in the complexcontaining solution

    VPRS-based regional decision fusion of CNN and MRF classifications for very fine resolution remotely sensed images

    Get PDF
    Recent advances in computer vision and pattern recognition have demonstrated the superiority of deep neural networks using spatial feature representation, such as convolutional neural networks (CNN), for image classification. However, any classifier, regardless of its model structure (deep or shallow), involves prediction uncertainty when classifying spatially and spectrally complicated very fine spatial resolution (VFSR) imagery. We propose here to characterise the uncertainty distribution of CNN classification and integrate it into a regional decision fusion to increase classification accuracy. Specifically, a variable precision rough set (VPRS) model is proposed to quantify the uncertainty within CNN classifications of VFSR imagery, and partition this uncertainty into positive regions (correct classifications) and non-positive regions (uncertain or incorrect classifications). Those “more correct” areas were trusted by the CNN, whereas the uncertain areas were rectified by a Multi-Layer Perceptron (MLP)-based Markov random field (MLP-MRF) classifier to provide crisp and accurate boundary delineation. The proposed MRF-CNN fusion decision strategy exploited the complementary characteristics of the two classifiers based on VPRS uncertainty description and classification integration. The effectiveness of the MRF-CNN method was tested in both urban and rural areas of southern England as well as Semantic Labelling datasets. The MRF-CNN consistently outperformed the benchmark MLP, SVM, MLP-MRF and CNN and the baseline methods. This research provides a regional decision fusion framework within which to gain the advantages of model-based CNN, while overcoming the problem of losing effective resolution and uncertain prediction at object boundaries, which is especially pertinent for complex VFSR image classification

    A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification

    Get PDF
    The contextual-based convolutional neural network (CNN) with deep architecture and pixel-based multilayer perceptron (MLP) with shallow structure are well-recognized neural network algorithms, representing the state-of-the-art deep learning method and the classical non-parametric machine learning approach, respectively. The two algorithms, which have very different behaviours, were integrated in a concise and effective way using a rule-based decision fusion approach for the classification of very fine spatial resolution (VFSR) remotely sensed imagery. The decision fusion rules, designed primarily based on the classification confidence of the CNN, reflect the generally complementary patterns of the individual classifiers. In consequence, the proposed ensemble classifier MLP-CNN harvests the complementary results acquired from the CNN based on deep spatial feature representation and from the MLP based on spectral discrimination. Meanwhile, limitations of the CNN due to the adoption of convolutional filters such as the uncertainty in object boundary partition and loss of useful fine spatial resolution detail were compensated. The effectiveness of the ensemble MLP-CNN classifier was tested in both urban and rural areas using aerial photography together with an additional satellite sensor dataset. The MLP-CNN classifier achieved promising performance, consistently outperforming the pixel-based MLP, spectral and textural-based MLP, and the contextual-based CNN in terms of classification accuracy. This research paves the way to effectively address the complicated problem of VFSR image classification

    An object-based convolutional neural network (OCNN) for urban land use classification

    Get PDF
    Urban land use information is essential for a variety of urban-related applications such as urban planning and regional administration. The extraction of urban land use from very fine spatial resolution (VFSR) remotely sensed imagery has, therefore, drawn much attention in the remote sensing community. Nevertheless, classifying urban land use from VFSR images remains a challenging task, due to the extreme difficulties in differentiating complex spatial patterns to derive high-level semantic labels. Deep convolutional neural networks (CNNs) offer great potential to extract high-level spatial features, thanks to its hierarchical nature with multiple levels of abstraction. However, blurred object boundaries and geometric distortion, as well as huge computational redundancy, severely restrict the potential application of CNN for the classification of urban land use. In this paper, a novel object-based convolutional neural network (OCNN) is proposed for urban land use classification using VFSR images. Rather than pixel-wise convolutional processes, the OCNN relies on segmented objects as its functional units, and CNN networks are used to analyse and label objects such as to partition within-object and between-object variation. Two CNN networks with different model structures and window sizes are developed to predict linearly shaped objects (e.g. Highway, Canal) and general (other non-linearly shaped) objects. Then a rule-based decision fusion is performed to integrate the class-specific classification results. The effectiveness of the proposed OCNN method was tested on aerial photography of two large urban scenes in Southampton and Manchester in Great Britain. The OCNN combined with large and small window sizes achieved excellent classification accuracy and computational efficiency, consistently outperforming its sub-modules, as well as other benchmark comparators, including the pixel-wise CNN, contextual-based MRF and object-based OBIA-SVM methods. The proposed method provides the first object-based CNN framework to effectively and efficiently address the complicated problem of urban land use classification from VFSR images

    Opportunities for machine learning and artificial intelligence in national mapping agencies:enhancing ordnance survey workflow

    Get PDF
    National Mapping agencies (NMA) are frequently tasked with providing highly accurate geospatial data for a range of customers. Traditionally, this challenge has been met by combining the collection of remote sensing data with extensive field work, and the manual interpretation and processing of the combined data. Consequently, this task is a significant logistical undertaking which benefits the production of high quality output, but which is extremely expensive to deliver. Therefore, novel approaches that can automate feature extraction and classification from remotely sensed data, are of great potential interest to NMAs across the entire sector. Using research undertaken at Great Britain’s NMA; Ordnance Survey (OS) as an example, this paper provides an overview of the recent advances at an NMA in the use of artificial intelligence (AI), including machine learning (ML) and deep learning (DL) based applications. Examples of these approaches are in automating the process of feature extraction and classification from remotely sensed aerial imagery. In addition, recent OS research in applying deep (convolutional) neural network architectures to image classification are also described. This overview is intended to be useful to other NMAs who may be considering the adoption of similar approaches within their workflows

    Use of a food frequency questionnaire in American Indian and Caucasian pregnant women: a validation study

    Get PDF
    BACKGROUND: Food frequency questionnaires (FFQs) have been validated in pregnant women, but few studies have focused specifically on low-income women and minorities. The purpose of this study was to examine the validity of the Harvard Service FFQ (HSFFQ) among low-income American Indian and Caucasian pregnant women. METHODS: The 100-item HSFFQ was administered three times to a sample of pregnant women, and two sets of 24-hour recalls (six total) were collected at approximately 12 and 28 weeks of gestation. The sample included a total of 283 pregnant women who completed Phase 1 of the study and 246 women who completed Phase 2 of the study. Deattenuated Pearson correlation coefficients were used to compare intakes of 24 nutrients estimated from the second and third FFQ to average intakes estimated from the week-12 and week-28 sets of diet recalls. RESULTS: Deattenuated correlations ranged from 0.09 (polyunsaturated fat) to 0.67 (calcium) for Phase 1 and from 0.27 (sucrose) to 0.63 (total fat) for Phase 2. Average deattenuated correlations for the two phases were 0.48 and 0.47, similar to those reported among other groups of pregnant women. CONCLUSION: The HSFFQ is a simple self-administered questionnaire that is useful in classifying low-income American Indian and Caucasian women according to relative dietary intake during pregnancy. Its use as a research tool in this population may provide important information about associations of nutrient intakes with pregnancy outcomes and may help to identify groups of women who would benefit most from nutritional interventions

    Injection of Human Bone Marrow and Mononuclear Cell Extract into Infarcted Mouse Hearts Results in Functional Improvement

    Get PDF
    Background: We have previously shown that mouse whole bone marrow cell (BMC) extract results in improvement of cardiac function and decreases scar size in a mouse model of myocardial infarction (MI), in the absence of intact cells. It is not clear if thes

    Entropy-driven liquid-liquid separation in supercooled water

    Full text link
    Twenty years ago Poole et al. (Nature 360, 324, 1992) suggested that the anomalous properties of supercooled water may be caused by a critical point that terminates a line of liquid-liquid separation of lower-density and higher-density water. Here we present an explicit thermodynamic model based on this hypothesis, which describes all available experimental data for supercooled water with better quality and with fewer adjustable parameters than any other model suggested so far. Liquid water at low temperatures is viewed as an 'athermal solution' of two molecular structures with different entropies and densities. Alternatively to popular models for water, in which the liquid-liquid separation is driven by energy, the phase separation in the athermal two-state water is driven by entropy upon increasing the pressure, while the critical temperature is defined by the 'reaction' equilibrium constant. In particular, the model predicts the location of density maxima at the locus of a near-constant fraction (about 0.12) of the lower-density structure.Comment: 7 pages, 6 figures. Version 2 contains an additional supplement with tables for the mean-field equatio

    Retention in Care and Connection to Care among HIV-Infected Patients on Antiretroviral Therapy in Africa: Estimation via a Sampling-Based Approach

    Get PDF
    Current estimates of retention among HIV-infected patients on antiretroviral therapy (ART) in Africa consider patients who are lost to follow-up (LTF) as well as those who die shortly after their last clinic visit to be no longer in care and to represent limitations in access to care. Yet many lost patients may have "silently" transferred and deaths shortly after the last clinic visit more likely represent limitations in clinical care rather than access to care after initial linkage.We evaluated HIV-infected adults initiating ART from 1/1/2004 to 9/30/2007 at a clinic in rural Uganda. A representative sample of lost patients was tracked in the community to obtain updated information about care at other ART sites. Updated outcomes were incorporated with probability weights to obtain "corrected" estimates of retention for the entire clinic population. We used the competing risks approach to estimate "connection to care"--the percentage of patients accessing care over time (including those who died while in care).Among 3,628 patients, 829 became lost, 128 were tracked and in 111, updated information was obtained. Of 111, 79 (71%) were alive and 35/48 (73%) of patients interviewed in person were in care and on ART. Patient retention for the clinic population assuming lost patients were not in care was 82.3%, 68.9%, and 60.1% at 1, 2 and 3 years. Incorporating updated care information from the sample of lost patients increased estimates of patient retention to 85.8% to 90.9%, 78.9% to 86.2% and 75.8% to 84.7% at the same time points.Accounting for "silent transfers" and early deaths increased estimates of patient retention and connection to care substantially. Deaths soon after the last clinic visit (potentially reflecting limitations in clinical effectiveness) and disconnection from care among patient who were alive each accounted for approximately half of failures of retention
    • …
    corecore