419 research outputs found

    Ramsey-Tur\'an Problems with small independence numbers

    Full text link
    Given a graph HH and a function f(n)f(n), the Ramsey-Tur\'an number RT(n,H,f(n))RT(n,H,f(n)) is the maximum number of edges in an nn-vertex HH-free graph with independence number at most f(n)f(n). For HH being a small clique, many results about RT(n,H,f(n))RT(n,H,f(n)) are known and we focus our attention on H=KsH=K_s for s13s\leq 13. By applying Szemer\'edi's Regularity Lemma, the dependent random choice method and some weighted Tur\'an-type results, we prove that these cliques have the so-called phase transitions when f(n)f(n) is around the inverse function of the off-diagonal Ramsey number of KrK_r versus a large clique KnK_n for some rsr\leq s.Comment: 20 page

    Protection of rat renal vitamin E levels by ischemic-preconditioning

    Get PDF
    BACKGROUND: During renal transplantation, the kidney remains without blood flow for a period of time. The following reperfusion of this ischemic kidney causes functional and structural injury. Formation of oxygen-derived free radicals (OFR) and subsequent lipid peroxidation (LP) has been implicated as the causative factors of these injuries. Vitamin E is known to be the main endogenous antioxidant that stabilizes cell membranes by interfering with LP. The present study was designed to examine the role of ischemic-preconditioning (repeated brief periods of ischemia, IPC) in prevention of renal injury caused by ischemia-reperfusion (IR) in rats. METHODS: IPC included sequential clamping of the right renal artery for 5 min and release of the clamp for another 5 min for a 3 cycles. IR was induced by 30 min ischemia followed by 10 min reperfusion. Four groups of male rats were used: Control, IPC, IR and IPC-IR. Vitamin E, an endogenous antioxidant and as an index of LP, was measured by HPLC and UV detection in renal venous plasma and tissue. Renal function was assessed by serum creatinine and BUN levels. Renal damage was assessed in sections stained with Haematoxylin and Eosin. RESULTS: In the IR group, there was a significant decrease in vitamin E in plasma and tissue compared to a control group (p,0.05). In the IPC-IR group, vitamin E concentration was significantly higher than in the IR group (p,0.01). The results showed that 30 min ischemia in the IR group significantly (p,0.05) reduced renal function demonstrated by an increase in serum creatinine levels as compared with the control group. These results in the IPC group also showed a significant difference with the IR group but no significant difference in serum BUN and creatinine between IR and IPC-IR group were detected. Histological evaluation showed no structural damage in the IPC group and an improvement in the IPC-IR group compared to IR alone. CONCLUSIONS: In this study, IPC preserved vitamin E levels, but it could not markedly improve renal function in the early phase (1–2 h) of reperfusion. IPC may be a useful method for antioxidant preservation in organ transplantation

    Biological and practical considerations regarding circadian rhythm and mental health relationships among nurses working night shifts: a narrative review and recommendations

    Get PDF
    Background: Sleep is a vital physiological process regulated by the circadian clock and homeostatic mechanisms. Shift work is necessary to ensure continuity of healthcare provision. Worldwide, nurses work night shifts on a rotational or permanent basis. Objective: To analyse the impact of circadian rhythm disruption due to night shift work on the mental wellbeing of nurses. Methods: The literature search was conducted using PubMed and Scopus electronic databases. Selection criteria include studies published in English between 1997 and 2021 that examined the impact of night-shift work on the mental health of nurses. Results: The searches generated a total of 22 records on the PubMed database, and 9 records on the Scopus database, and a total of 31 studies. 29 papers were identified after removal of duplicates. However, 29 articles were screened based on the review of titles and abstracts. 19 articles were identified for full-test review. Seven papers were included in this review. Conclusions: Disrupted circadian rhythms and poor sleep quality and quantity have been identified as two of the most significant elements in the long-term effects of night-shift work on nurses' mental health. Strategies and policies to promote workplace health may reduce the occurrence of mental health disorders among night-shift nurses, whether the shifts are rotational or permanent. Nursing supervisors and hospital administrators should consider developing new guidelines to minimize the negative impact of night shift rotations on mental health and the quality of life among nurses

    Response shift in patient-reported outcomes:definition, theory, and a revised model

    Get PDF
    International audiencePurpose The extant response shift definitions and theoretical response shift models, while helpful, also introduce predicaments and theoretical debates continue. To address these predicaments and stimulate empirical research, we propose a more specific formal definition of response shift and a revised theoretical model. Methods This work is an international collaborative effort and involved a critical assessment of the literature. Results Three main predicaments were identified. First, the formal definitions of response shift need further specification and clarification. Second, previous models were focused on explaining change in the construct intended to be measured rather than explaining the construct at multiple time points and neglected the importance of using at least two time points to investigate response shift. Third, extant models do not explicitly distinguish the measure from the construct. Here we define response shift as an effect occurring whenever observed change (e.g., change in patient-reported outcome measures (PROM) scores) is not fully explained by target change (i.e., change in the construct intended to be measured). The revised model distinguishes the measure (e.g., PROM) from the underlying target construct (e.g., quality of life) at two time points. The major plausible paths are delineated, and the underlying assumptions of this model are explicated. Conclusion It is our hope that this refined definition and model are useful in the further development of response shift theory. The model with its explicit list of assumptions and hypothesized relationships lends itself for critical, empirical examination. Future studies are needed to empirically test the assumptions and hypothesized relationships

    Analysis of RNA Binding by the Dengue Virus NS5 RNA Capping Enzyme

    Get PDF
    Flaviviruses are small, capped positive sense RNA viruses that replicate in the cytoplasm of infected cells. Dengue virus and other related flaviviruses have evolved RNA capping enzymes to form the viral RNA cap structure that protects the viral genome and directs efficient viral polyprotein translation. The N-terminal domain of NS5 possesses the methyltransferase and guanylyltransferase activities necessary for forming mature RNA cap structures. The mechanism for flavivirus guanylyltransferase activity is currently unknown, and how the capping enzyme binds its diphosphorylated RNA substrate is important for deciphering how the flavivirus guanylyltransferase functions. In this report we examine how flavivirus NS5 N-terminal capping enzymes bind to the 5′ end of the viral RNA using a fluorescence polarization-based RNA binding assay. We observed that the KD for RNA binding is approximately 200 nM Dengue, Yellow Fever, and West Nile virus capping enzymes. Removal of one or both of the 5′ phosphates reduces binding affinity, indicating that the terminal phosphates contribute significantly to binding. RNA binding affinity is negatively affected by the presence of GTP or ATP and positively affected by S-adensyl methoninine (SAM). Structural superpositioning of the dengue virus capping enzyme with the Vaccinia virus VP39 protein bound to RNA suggests how the flavivirus capping enzyme may bind RNA, and mutagenesis analysis of residues in the putative RNA binding site demonstrate that several basic residues are critical for RNA binding. Several mutants show differential binding to 5′ di-, mono-, and un-phosphorylated RNAs. The mode of RNA binding appears similar to that found with other methyltransferase enzymes, and a discussion of diphosphorylated RNA binding is presented

    Dopaminergic Polymorphisms Associated with Time-on-Task Declines and Fatigue in the Psychomotor Vigilance Test

    Get PDF
    Prolonged demands on the attention system can cause a decay in performance over time known as the time-on-task effect. The inter-subject differences in the rate of this decline are large, and recent efforts have been made to understand the biological bases of these individual differences. In this study, we investigate the genetic correlates of the time-on-task effect, as well as its accompanying changes in subjective fatigue and mood. N = 332 subjects performed a 20-minute test of sustained attention (the Psychomotor Vigilance Test) and rated their subjective states before and after the test. We observed substantial time-on-task effects on average, and large inter-individual differences in the rate of these declines. The 10-repeat allele of the variable number of tandem repeats marker (VNTR) in the dopamine transporter gene and the Met allele of the catechol-o-methyl transferase (COMT) Val158Met polymorphism were associated with greater vulnerability to time-on-task. Separately, the exon III DRD4 48 bp VNTR of the dopamine receptor gene DRD4 was associated with subjective decreases in energy. No polymorphisms were associated with task-induced changes in mood. We posit that the dopamine transporter and COMT genes exert their effects by increasing dopaminergic tone, which may induce long-term changes in the prefrontal cortex, an important mediator of sustained attention. Thus, these alleles may affect performance particularly when sustained dopamine release is necessary

    TraR, a Homolog of a RNAP Secondary Channel Interactor, Modulates Transcription

    Get PDF
    Recent structural and biochemical studies have identified a novel control mechanism of gene expression mediated through the secondary channel of RNA Polymerase (RNAP) during transcription initiation. Specifically, the small nucleotide ppGpp, along with DksA, a RNAP secondary channel interacting factor, modifies the kinetics of transcription initiation, resulting in, among other events, down-regulation of ribosomal RNA synthesis and up-regulation of several amino acid biosynthetic and transport genes during nutritional stress. Until now, this mode of regulation of RNAP was primarily associated with ppGpp. Here, we identify TraR, a DksA homolog that mimics ppGpp/DksA effects on RNAP. First, expression of TraR compensates for dksA transcriptional repression and activation activities in vivo. Second, mutagenesis of a conserved amino acid of TraR known to be critical for DksA function abolishes its activity, implying both structural and functional similarity to DksA. Third, unlike DksA, TraR does not require ppGpp for repression of the rrnB P1 promoter in vivo and in vitro or activation of amino acid biosynthesis/transport genes in vivo. Implications for DksA/ppGpp mechanism and roles of TraR in horizontal gene transfer and virulence are discussed

    An A2A adenosine receptor agonist, ATL313, reduces inflammation and improves survival in murine sepsis models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The pathophysiology of sepsis is due in part to early systemic inflammation. Here we describe molecular and cellular responses, as well as survival, in A<sub>2A </sub>adenosine receptor (AR) agonist treated and untreated animals during experimental sepsis.</p> <p>Methods</p> <p>Sepsis was induced in mice by intraperitoneal inoculation of live bacteria (<it>Escherichia coli </it>or <it>Staphylococcus aureus</it>) or lipopolysaccharide (LPS). Mice inoculated with live bacteria were treated with an A<sub>2A </sub>AR agonist (ATL313) or phosphate buffered saline (PBS), with or without the addition of a dose of ceftriaxone. LPS inoculated mice were treated with ATL313 or PBS. Serum cytokines and chemokines were measured sequentially at 1, 2, 4, 8, and 24 hours after LPS was administered. In survival studies, mice were followed until death or for 7 days.</p> <p>Results</p> <p>There was a significant survival benefit in mice infected with live <it>E. coli </it>(100% vs. 20%, <it>p </it>= 0.013) or <it>S. aureus </it>(60% vs. 20%, <it>p </it>= 0.02) when treated with ATL313 in conjunction with an antibiotic versus antibiotic alone. ATL313 also improved survival from endotoxic shock when compared to PBS treatment (90% vs. 40%, <it>p </it>= 0.005). The serum concentrations of TNF-α, MIP-1α, MCP-1, IFN-γ, and IL-17 were decreased by ATL313 after LPS injection (<it>p </it>< 0.05). Additionally, ATL313 increased the concentration of IL-10 under the same conditions (<it>p </it>< 0.05). Circulating white blood cell concentrations were higher in ATL313 treated animals (<it>p </it>< 0.01).</p> <p>Conclusion</p> <p>Further studies are warranted to determine the clinical utility of ATL313 as a novel treatment for sepsis.</p

    Pro-apoptotic and antiproliferative activity of human KCNRG, a putative tumor suppressor in 13q14 region

    Get PDF
    Deletion of 13q14.3 and a candidate gene KCNRG (potassium channel regulating gene) is the most frequent chromosomal abnormality in B-cell chronic lymphocytic leukemia and is a common finding in multiple myeloma (MM). KCNRG protein may interfere with the normal assembly of the K+ channel proteins causing the suppression of Kv currents. We aimed to examine possible role of KCNRG haploinsufficiency in chronic lymphocytic leukemia (CLL) and MM cells. We performed detailed genomic analysis of the KCNRG locus; studied effects of the stable overexpression of KCNRG isoforms in RPMI-8226, HL-60, and LnCaP cells; and evaluated relative expression of its transcripts in various human lymphomas. Three MM cell lines and 35 CLL PBL samples were screened for KCNRG mutations. KCNRG exerts growth suppressive and pro-apoptotic effects in HL-60, LnCaP, and RPMI-8226 cells. Direct sequencing of KCNRG exons revealed point mutation delT in RPMI-8226 cell line. Levels of major isoform of KCNRG mRNA are lower in DLBL lymphomas compared to normal PBL samples, while levels of its minor mRNA are decreased across the broad range of the lymphoma types. The haploinsufficiency of KCNRG might be relevant to the progression of CLL and MM at least in a subset of patients

    Utility of Cardiac Magnetic Resonance to assess association between admission hyperglycemia and myocardial damage in patients with reperfused ST-Segment Elevation Myocardial Infarction

    Get PDF
    International audienceAbstract: Aims: to investigate the association between admission hyperglycemia and myocardial damage in patients with ST-segment elevation myocardial infarction (STEMI) using Cardiac Magnetic Resonance (CMR). Methods: We analyzed 113 patients with STEMI treated with successful primary percutaneous coronary intervention. Admission hyperglycemia was defined as a glucose level >= 7.8 mmol/l. Contrast-enhanced CMR was performed between 3 and 7 days after reperfusion to evaluate left ventricular function and perfusion data after injection of gadolinium-DTPA. First-pass images (FP), providing assessment of microvascular obstruction and Late Gadolinium Enhanced images (DE), reflecting the extent of infarction, were investigated and the extent of transmural tissue damage was determined by visual scores. Results: Patients with a supramedian FP and DE scores more frequently had left anterior descending culprit artery (p = 0.02 and < 0.001), multivessel disease (p = 0.02 for both) and hyperglycemia (p < 0.001). Moreover, they were characterized by higher levels of HbA(1c) (p = 0.01 and 0.04), peak plasma Creatine Kinase (p < 0.001), left ventricular end-systolic volume (p = 0.005 and < 0.001), and lower left ventricular ejection fraction (p = 0.001 and < 0.001). In a multivariate model, admission hyperglycemia remains independently associated with increased FP and DE scores. Conclusion: Our results show the existence of a strong relationship between glucose metabolism impairment and myocardial damage in patients with STEMI. Further studies are needed to show if aggressive glucose control improves myocardial perfusion, which could be assessed using CMR
    corecore