2,395 research outputs found

    Austral summer droughts and their driving mechanisms in observations and present‐day climate simulations over Malawi

    Get PDF
    Droughts are a key feature of weather systems over Malawi and southern Africa. Their societal relevance in Malawi underscores the need for improved understanding of drought characteristics and atmospheric processes that drive them. We use the Standardized Precipitation and Evapotranspiration Index with the run theory to identify and characterize droughts in observations (1961–2017) and CMIP5 models across Malawi. We find no major differences in drought duration, severity, and intensity between the northern and southern parts of Malawi. However, circulation patterns associated with droughts in the two regions are different, and typically organized in such a way that droughts in one region coincide with wetter conditions in the other. Anomalous circulation patterns diminishing moisture convergence and convection over the affected region are a typical feature of summer droughts. We show that precipitation variability is principally governed by advected moisture, transported via three main tracks of northwesterly, northeasterly, and southeasterly moisture fluxes. The three tracks interact to form a convergence zone with a peak situated over Malawi. Variability in the respective moisture flux tracks influences the variability in the location and intensity of the convergence zone, and thus the location of the ensuing drought. We note links between variability in the moisture advection tracks and El Nino Southern Oscillations and other modes of variability including the Indian Ocean Dipole and Subtropical Indian Ocean Dipole. Both negative and positive biases in drought frequency are apparent in CMIP5 models but the majority overestimate drought duration and severity. The relationship between precipitation and net total moisture flux is consistently simulated. However, we note significant model inconsistencies in the relationship between precipitation and moisture flux from the southeasterly track, which potentially undermines the confidence in model simulation of drought processes over Malawi

    A Straightforward Electrochemical Approach to Imine- and Amine-bisphenolate Metal Complexes with Facile Control Over Metal Oxidation State

    No full text
    Synthetic methods to prepare organometallic and coordination compounds such as Schiff-base complexes are diverse, with the route chosen being dependent upon many factors such as metal–ligand combination and metal oxidation state. In this work we have shown that electrochemical methodology can be employed to synthesize a variety of metal–salen/salan complexes which comprise diverse metal–ligand combinations and oxidation states. Broad application has been demonstrated through the preparation of 34 complexes under mild and ambient conditions. Unprecedented control over metal oxidation state (MII/III/IV where M=Fe, Mn) is presented by simple modification of reaction conditions. Along this route, a general protocol-switch is described which allows access to analytically pure FeII/III–salen complexes. Tuning electrochemical potential, selective metalation of a Mn/Ni alloy is also presented which exclusively delivers MnII/IV–salen complexes in high yield

    Do Patients and Oncologists Discuss the Cost of Cancer Treatment? An Observational Study of Clinical Interactions Between African American Patients and Their Oncologists

    Get PDF
    PURPOSE: Financial toxicity negatively affects patients with cancer, especially racial/ethnic minorities. Patient-oncologist discussions about treatment-related costs may reduce financial toxicity by factoring costs into treatment decisions. This study investigated the frequency and nature of cost discussions during clinical interactions between African American patients and oncologists and examined whether cost discussions were affected by patient sociodemographic characteristics and social support, a known buffer to perceived financial stress. Methods Video recorded patient-oncologist clinical interactions (n = 103) from outpatient clinics of two urban cancer hospitals (including a National Cancer Institute-designated comprehensive cancer center) were analyzed. Coders studied the videos for the presence and duration of cost discussions and then determined the initiator, topic, oncologist response to the patient\u27s concerns, and the patient\u27s reaction to the oncologist\u27s response. RESULTS: Cost discussions occurred in 45% of clinical interactions. Patients initiated 63% of discussions; oncologists initiated 36%. The most frequent topics were concern about time off from work for treatment (initiated by patients) and insurance (initiated by oncologists). Younger patients and patients with more perceived social support satisfaction were more likely to discuss cost. Patient age interacted with amount of social support to affect frequency of cost discussions within interactions. Younger patients with more social support had more cost discussions; older patients with more social support had fewer cost discussions. CONCLUSION: Cost discussions occurred in fewer than one half of the interactions and most commonly focused on the impact of the diagnosis on patients\u27 opportunity costs rather than treatment costs. Implications for ASCO\u27s Value Framework and design of interventions to improve cost discussions are discussed

    Carbon sequestration and biodiversity following 18 years of active tropical forest restoration

    Get PDF
    Vast areas of degraded tropical forest, combined with increasing interest in mitigating climate change and conserving biodiversity, demonstrate the potential value of restoring tropical forest. However, there is a lack of long-term studies assessing active management for restoration. Here we investigate Above-Ground Biomass (AGB), forest structure, and biodiversity, before degradation (in old-growth forest), after degradation (in abandoned agricultural savanna grassland), and within a forest that is actively being restored in Kibale National Park, Uganda. In 1995 degraded land in Kibale was protected from fire and replanted with native seedlings (39 species) at a density of 400 seedlings ha-1. Sixty-five plots (50 m × 10 m) were established in restoration areas in 2005 and 50 of these were re-measured in 2013, allowing changes to be assessed over 18 years. Degraded plots have an Above Ground Biomass (AGB) of 5.1 Mg dry mass ha-1, of which 80% is grass. By 2005 AGB of trees ≥10 cm DBH was 9.5 Mg ha-1, increasing to 40.6 Mg ha-1 by 2013, accumulating at a rate of 3.9 Mg ha-1 year-1. A total of 153 planted individuals ha-1 (38%) remained by 2013, contributing 28.9 Mg ha-1 (70%) of total AGB. Eighteen years after restoration, AGB in the plots was 12% of old-growth (419 Mg ha-1). If current accumulation rates continue restoration forest would reach old-growth AGB in a further 96 years. Biodiversity of degraded plots prior to restoration was low with no tree species and 2 seedling species per sample plot (0.05 ha). By 2005 restoration areas had an average of 3 tree and 3 seedling species per sample plot, increasing to 5 tree and 9 seedling species per plot in 2013. However, biodiversity was still significantly lower than old-growth forest, at 8 tree and 16 seedling species in an equivalent area. The results suggest that forest restoration is beneficial for AGB accumulation with planted stems storing the majority of AGB. Changes in biodiversity appear slower; possibly due to low stem turnover. Overall this restoration treatment is an effective means of restoring degraded land in the area, as can be seen from the lack of regeneration in degraded plots, which remain low-AGB and diversity, largely due to the impacts of fire and competition with grasses

    Impact of climate change on crop suitability in sub-Saharan Africa in parameterized and convection-permitting regional climate models

    Get PDF
    Due to high present-day temperatures and reliance on rainfed agriculture, sub-Saharan Africa is highly vulnerable to climate change. We use a comprehensive set of global (CMIP5) and regional (CORDEX-Africa) climate projections and a new convection-permitting pan-Africa simulation (and its parameterized counterpart) to examine changes in rainfall and temperature and the impact on crop suitability of maize, cassava and soybean in sub-Saharan Africa by 2100 (RCP8.5). This is the first time an explicit-convection simulation has been used to examine crop suitability in Africa. Increasing temperatures and declining rainfall led to large parts of sub-Saharan Africa becoming unsuitable for multiple staple crops, which may necessitate a transition to more heat and drought resistant crops to ensure food and nutrition security. Soybean was resilient to temperature increases, however maize and cassava were not, leading to declines in crop suitability. Inclusion of sensitivity to extreme temperatures led to larger declines in maize suitability than when this was excluded. The results were explored in detail for Tanzania, Malawi, Zambia and South Africa. In each country the range of projections included wetting and drying, but the majority of models projected rainfall declines leading to declines in crop suitability, except in Tanzania. Explicit-convection was associated with more high temperature extremes, but had little systematic impact on average temperature and total rainfall, and the resulting suitability analysis. Global model uncertainty, rather than convection parameterizations, still makes up the largest part of the uncertainty in future climate. Explicit-convection may have more impact if suitability included a more comprehensive treatment of extremes. This work highlights the key uncertainty from global climate projections for crop suitability projections, and the need for improved information on sensitivities of African crops to extremes, in order to give better predictions and make better use of the new generation of explicit-convection models

    Dynamic regulation of the endocannabinoid system: implications for analgesia

    Get PDF
    The analgesic effects of cannabinoids are well documented, but these are often limited by psychoactive side-effects. Recent studies indicate that the endocannabinoid system is dynamic and altered under different pathological conditions, including pain states. Changes in this receptor system include altered expression of receptors, differential synthetic pathways for endocannabinoids are expressed by various cell types, multiple pathways of catabolism and the generation of biologically active metabolites, which may be engaged under different conditions. This review discusses the evidence that pain states alter the endocannabinoid receptor system at key sites involved in pain processing and how these changes may inform the development of cannabinoid-based analgesics

    CSI-OMIM - Clinical Synopsis Search in OMIM

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The OMIM database is a tool used daily by geneticists. Syndrome pages include a Clinical Synopsis section containing a list of known phenotypes comprising a clinical syndrome. The phenotypes are in free text and different phrases are often used to describe the same phenotype, the differences originating in spelling variations or typing errors, varying sentence structures and terminological variants.</p> <p>These variations hinder searching for syndromes or using the large amount of phenotypic information for research purposes. In addition, negation forms also create false positives when searching the textual description of phenotypes and induce noise in text mining applications.</p> <p>Description</p> <p>Our method allows efficient and complete search of OMIM phenotypes as well as improved data-mining of the OMIM phenome. Applying natural language processing, each phrase is tagged with additional semantic information using UMLS and MESH. Using a grammar based method, annotated phrases are clustered into groups denoting similar phenotypes. These groups of synonymous expressions enable precise search, as query terms can be matched with the many variations that appear in OMIM, while avoiding over-matching expressions that include the query term in a negative context. On the basis of these clusters, we computed pair-wise similarity among syndromes in OMIM. Using this new similarity measure, we identified 79,770 new connections between syndromes, an average of 16 new connections per syndrome. Our project is Web-based and available at <url>http://fohs.bgu.ac.il/s2g/csiomim</url></p> <p>Conclusions</p> <p>The resulting enhanced search functionality provides clinicians with an efficient tool for diagnosis. This search application is also used for finding similar syndromes for the candidate gene prioritization tool S2G.</p> <p>The enhanced OMIM database we produced can be further used for bioinformatics purposes such as linking phenotypes and genes based on syndrome similarities and the known genes in Morbidmap.</p

    Duration of palliative care before death in international routine practice: A systematic review and meta-analysis

    Get PDF
    Background: Early provision of palliative care, at least 3-4 months before death, can improve patient quality of life and reduce burdensome treatments and financial costs. However, there is wide variation in duration of palliative care received before death reported across the research literature. This study aims to determine the duration of time from initiation of palliative care to death for adults receiving palliative care across the international literature. Methods: We conducted a systematic review and meta-analysis that was registered with PROSPERO (CRD42018094718). Six databases were searched for articles published between Jan 1st 2013 and Dec 31st 2018: MEDLINE; Embase; CINAHL; Global Health, Web of Science; and The Cochrane Library, as well undertaking citation list searches. Following PRISMA guidelines, articles were screened using inclusion (any study design reporting duration from initiation to death in adults palliative care services) and exclusion (paediatric/non-English language studies, trials influencing the timing of palliative care) criteria. Quality appraisal was completed using Hawker’s criteria and the main outcome was duration of palliative care (median/mean days from initiation to death). Results: 169 studies from 23 countries were included, involving 11,996,479 patients. Prior to death, the median duration from initiation of palliative care to death was 18·9 days (IQR 0·1), weighted by the number of participants. Significant differences between duration were found by disease type (15 days for cancer vs 6 days for non-cancer conditions), service type (19 days for specialist palliative care unit, 20 days for community/home care, and 6 days for general hospital ward) and development index of countries (18.91 days for very high development vs 34 days for all other levels of development). 43% of studies were rated as ‘good’ quality. Limitations include a preponderance of data from high-income countries, with unclear implications for low- and middle-income countries. Conclusions: Duration of palliative care is much shorter than the 3-4 months of input by a multidisciplinary team necessary in order for the full benefits of palliative care to be realised. Furthermore, the findings highlight inequity in access across patient, service and country characteristics. We welcome more consistent terminology and methodology in the assessment of duration of palliative care from all countries, including from less-developed settings, to inform benchmarking, service evaluation and quality improvement

    Advanced optical imaging in living embryos

    Get PDF
    Developmental biology investigations have evolved from static studies of embryo anatomy and into dynamic studies of the genetic and cellular mechanisms responsible for shaping the embryo anatomy. With the advancement of fluorescent protein fusions, the ability to visualize and comprehend how thousands to millions of cells interact with one another to form tissues and organs in three dimensions (xyz) over time (t) is just beginning to be realized and exploited. In this review, we explore recent advances utilizing confocal and multi-photon time-lapse microscopy to capture gene expression, cell behavior, and embryo development. From choosing the appropriate fluorophore, to labeling strategy, to experimental set-up, and data pipeline handling, this review covers the various aspects related to acquiring and analyzing multi-dimensional data sets. These innovative techniques in multi-dimensional imaging and analysis can be applied across a number of fields in time and space including protein dynamics to cell biology to morphogenesis
    corecore