242 research outputs found

    Toward Fulfilling the Promise of Molecular Medicine in Fragile X

    Get PDF
    Fragile X syndrome (FXS) is the most common inherited form of mental retardation and a leading known cause of autism. It is caused by loss of expression of the fragile X mental retardation protein (FMRP), an RNA-binding protein that negatively regulates protein synthesis. In neurons, multiple lines of evidence suggest that protein synthesis at synapses is triggered by activation of group 1 metabotropic glutamate receptors (Gp1 mGluRs) and that many functional consequences of activating these receptors are altered in the absence of FMRP. These observations have led to the theory that exaggerated protein synthesis downstream of Gp1 mGluRs is a core pathogenic mechanism in FXS. This excess can be corrected by reducing signaling by Gp1 mGluRs, and numerous studies have shown that inhibition of mGluR5, in particular, can ameliorate multiple mutant phenotypes in animal models of FXS. Clinical trials based on this therapeutic strategy are currently under way. FXS is therefore poised to be the first neurobehavioral disorder in which corrective treatments have been developed from the bottom up: from gene identification to pathophysiology in animals to novel therapeutics in humans. The insights gained from FXS and other autism-related single-gene disorders may also assist in identifying molecular mechanisms and potential treatment approaches for idiopathic autism.Eunice Kennedy Shriver National Institute of Child Health and Human Development (U.S.)National Institute of Mental Health (U.S.)FRAXA Research Foundatio

    Alterations in vasodilator-stimulated phosphoprotein (VASP) phosphorylation: associations with asthmatic phenotype, airway inflammation and β(2)-agonist use

    Get PDF
    BACKGROUND: Vasodilator-stimulated phosphoprotein (VASP) mediates focal adhesion, actin filament binding and polymerization in a variety of cells, thereby inhibiting cell movement. Phosphorylation of VASP via cAMP and cGMP dependent protein kinases releases this "brake" on cell motility. Thus, phosphorylation of VASP may be necessary for epithelial cell repair of damage from allergen-induced inflammation. Two hypotheses were examined: (1) injury from segmental allergen challenge increases VASP phosphorylation in airway epithelium in asthmatic but not nonasthmatic normal subjects, (2) regular in vivo β(2)-agonist use increases VASP phosphorylation in asthmatic epithelium, altering cell adhesion. METHODS: Bronchial epithelium was obtained from asthmatic and non-asthmatic normal subjects before and after segmental allergen challenge, and after regularly inhaled albuterol, in three separate protocols. VASP phosphorylation was examined in Western blots of epithelial samples. DNA was obtained for β(2)-adrenergic receptor haplotype determination. RESULTS: Although VASP phosphorylation increased, it was not significantly greater after allergen challenge in asthmatics or normals. However, VASP phosphorylation in epithelium of nonasthmatic normal subjects was double that observed in asthmatic subjects, both at baseline and after challenge. Regularly inhaled albuterol significantly increased VASP phosphorylation in asthmatic subjects in both unchallenged and antigen challenged lung segment epithelium. There was also a significant increase in epithelial cells in the bronchoalveolar lavage of the unchallenged lung segment after regular inhalation of albuterol but not of placebo. The haplotypes of the β(2)-adrenergic receptor did not appear to associate with increased or decreased phosphorylation of VASP. CONCLUSION: Decreased VASP phosphorylation was observed in epithelial cells of asthmatics compared to nonasthmatic normals, despite response to β-agonist. The decreased phosphorylation does not appear to be associated with a particular β(2)-adrenergic receptor haplotype. The observed decrease in VASP phosphorylation suggests greater inhibition of actin reorganization which is necessary for altering attachment and migration required during epithelial repair

    Does improved functional performance help to reduce urinary incontinence in institutionalized older women? a multicenter randomized clinical trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Urinary incontinence (UI) is a major problem in older women. Management is usually restricted to dealing with the consequences instead of treating underlying causes such as bladder dysfunction or reduced mobility.</p> <p>The aim of this multicenter randomized controlled trial was to compare a group-based behavioral exercise program to prevent or reduce UI, with usual care. The exercise program aimed to improve functional performance of pelvic floor muscle (PFM), bladder and physical performance of women living in homes for the elderly.</p> <p>Methods</p> <p>Twenty participating Dutch homes were matched and randomized into intervention or control homes using a random number generator. Homes recruited 6–10 older women, with or without UI, with sufficient cognitive and physical function to participate in the program comprising behavioral aspects of continence and physical exercises to improve PFM, bladder and physical performance. The program consisted of a weekly group training session and homework exercises and ran for 6 months during which time the control group participants received care as usual. Primary outcome measures after 6 months were presence or absence of UI, frequency of episodes (measured by participants and caregivers (not blinded) using a 3-day bladder diary) and the Physical Performance Test (blinded). Linear and logistic regression analysis based on the Intention to Treat (ITT) principle using an imputed data set and per protocol analysis including all participants who completed the study and intervention (minimal attendance of 14 sessions).</p> <p>Results</p> <p>102 participants were allocated to the program and 90 to care as usual. ITT analysis (n = 85 intervention, n = 70 control) showed improvement of physical performance (intervention +8%; control −7%) and no differences on other primary and secondary outcome measures. Per protocol analysis (n = 51 intervention, n = 60 control) showed a reduction of participants with UI (intervention −40%; control −28%) and in frequency of episodes (intervention −51%; control −42%) in both groups; improvement of physical performance (intervention + 13%; control −4%) was related to participation in the exercise program.</p> <p>Conclusions</p> <p>This study shows that improving physical performance is feasible in institutionalized older women by exercise. Observed reductions in UI were not related to the intervention. [Current Controlled Trials ISRCTN63368283]</p

    Serine phosphorylation regulates paxillin turnover during cell migration

    Get PDF
    BACKGROUND: Paxillin acts as an adaptor protein that localizes to focal adhesion. This protein is regulated during cell migration by phosphorylation on tyrosine, serine and threonine residues. Most of these phosphorylations have been implicated in the regulation of different steps of cell migration. The two major phosphorylation sites of paxillin in response to adhesion to an extracellular matrix are serines 188 and 190. However, the function of this phosphorylation event remains unknown. The purpose of this work was to determine the role of paxillin phosphorylation on residues S188 and S190 in the regulation of cell migration. RESULTS: We used NBT-II epithelial cells that can be induced to migrate when plated on collagen. To examine the role of paxillin serines 188/190 in cell migration, we constructed an EGFP-tagged paxillin mutant in which S188/S190 were mutated into unphosphorylatable alanine residues. We provide evidence that paxillin is regulated by proteasomal degradation following polyubiquitylation of the protein. During active cell migration on collagen, paxillin is protected from proteasome-dependent degradation. We demonstrate that phosphorylation of serines 188/190 is necessary for the protective effect of collagen. In an effort to understand the physiological relevance of paxillin protection from degradation, we show that cells expressing the paxillin S188/190A interfering mutant spread less, have reduced protrusive activity but migrate more actively. CONCLUSION: Our data demonstrate for the first time that serine-regulated degradation of paxillin plays a key role in the modulation of membrane dynamics and consequently, in the control of cell motility

    Hierarchical Bayesian level set inversion

    Get PDF
    The level set approach has proven widely successful in the study of inverse problems for inter- faces, since its systematic development in the 1990s. Re- cently it has been employed in the context of Bayesian inversion, allowing for the quantification of uncertainty within the reconstruction of interfaces. However the Bayesian approach is very sensitive to the length and amplitude scales in the prior probabilistic model. This paper demonstrates how the scale-sensitivity can be cir- cumvented by means of a hierarchical approach, using a single scalar parameter. Together with careful con- sideration of the development of algorithms which en- code probability measure equivalences as the hierar- chical parameter is varied, this leads to well-defined Gibbs based MCMC methods found by alternating Metropolis-Hastings updates of the level set function and the hierarchical parameter. These methods demon- strably outperform non-hierarchical Bayesian level set methods

    Regulation of ABCC6 trafficking and stability by a conserved C-terminal PDZ-like sequence

    Get PDF
    Mutations in the ABCC6 ABC-transporter are causative of pseudoxanthoma elasticum (PXE). The loss of functional ABCC6 protein in the basolateral membrane of the kidney and liver is putatively associated with altered secretion of a circulatory factor. As a result, systemic changes in elastic tissues are caused by progressive mineralization and degradation of elastic fibers. Premature arteriosclerosis, loss of skin and vascular tone, and a progressive loss of vision result from this ectopic mineralization. However, the identity of the circulatory factor and the specific role of ABCC6 in disease pathophysiology are not known. Though recessive loss-of-function alleles are associated with alterations in ABCC6 expression and function, the molecular pathologies associated with the majority of PXE-causing mutations are also not known. Sequence analysis of orthologous ABCC6 proteins indicates the C-terminal sequences are highly conserved and share high similarity to the PDZ sequences found in other ABCC subfamily members. Genetic testing of PXE patients suggests that at least one disease-causing mutation is located in a PDZ-like sequence at the extreme C-terminus of the ABCC6 protein. To evaluate the role of this C-terminal sequence in the biosynthesis and trafficking of ABCC6, a series of mutations were utilized to probe changes in ABCC6 biosynthesis, membrane stability and turnover. Removal of this PDZ-like sequence resulted in decreased steady-state ABCC6 levels, decreased cell surface expression and stability, and mislocalization of the ABCC6 protein in polarized cells. These data suggest that the conserved, PDZ-like sequence promotes the proper biosynthesis and trafficking of the ABCC6 protein. © 2014 Xue et al

    Fragile x syndrome and autism: from disease model to therapeutic targets

    Get PDF
    Autism is an umbrella diagnosis with several different etiologies. Fragile X syndrome (FXS), one of the first identified and leading causes of autism, has been modeled in mice using molecular genetic manipulation. These Fmr1 knockout mice have recently been used to identify a new putative therapeutic target, the metabotropic glutamate receptor 5 (mGluR5), for the treatment of FXS. Moreover, mGluR5 signaling cascades interact with a number of synaptic proteins, many of which have been implicated in autism, raising the possibility that therapeutic targets identified for FXS may have efficacy in treating multiple other causes of autism

    Targeted treatments for fragile X syndrome

    Get PDF
    Fragile X syndrome (FXS) is the most common identifiable genetic cause of intellectual disability and autistic spectrum disorders (ASD), with up to 50% of males and some females with FXS meeting criteria for ASD. Autistic features are present in a very high percent of individuals with FXS, even those who do not meet full criteria for ASD. Recent major advances have been made in the understanding of the neurobiology and functions of FMRP, the FMR1 (fragile X mental retardation 1) gene product, which is absent or reduced in FXS, largely based on work in the fmr1 knockout mouse model. FXS has emerged as a disorder of synaptic plasticity associated with abnormalities of long-term depression and long-term potentiation and immature dendritic spine architecture, related to the dysregulation of dendritic translation typically activated by group I mGluR and other receptors. This work has led to efforts to develop treatments for FXS with neuroactive molecules targeted to the dysregulated translational pathway. These agents have been shown to rescue molecular, spine, and behavioral phenotypes in the FXS mouse model at multiple stages of development. Clinical trials are underway to translate findings in animal models of FXS to humans, raising complex issues about trial design and outcome measures to assess cognitive change that might be associated with treatment. Genes known to be causes of ASD interact with the translational pathway defective in FXS, and it has been hypothesized that there will be substantial overlap in molecular pathways and mechanisms of synaptic dysfunction between FXS and ASD. Therefore, targeted treatments developed for FXS may also target subgroups of ASD, and clinical trials in FXS may serve as a model for the development of clinical trial strategies for ASD and other cognitive disorders

    Public Service Broadcasting-Friends Groups as a Microcosm of Public Interest Media Advocacy

    Get PDF
    This article is concerned with the interdependencies between public service broadcasters and the third sector, an area in which there is little research that has provided in-depth analysis of case studies. It investigates and compares three public service broadcasting (PSB)-Friends groups in the UK, Australia, and South Africa. By means of analyzing semi-structured interviews and archival data, we address development, institutionalization and policy impact of the Voice of the Listener &amp; Viewer, ABC-Friends, and SOS Coalition. Drawing on resource-mobilization theory we argue that, in particular, material, human, and informational resources, contextualized with political opportunities, have analytic value in explaining similarities and differences between the groups, which are conceived as a microcosm of public interest media advocacy
    corecore