4 research outputs found

    PHL 1445: An eclipsing cataclysmic variable with a substellar donor near the period minimum

    Get PDF
    PublishedThis is a pre-copyedited, author-produced PDF of an article accepted for publication in Monthly Notices of the Royal Astronomical Society following peer review. The version of record is available online via the DOI in this record.We present high-speed, three-colour photometry of the eclipsing dwarf nova PHL 1445, which, with an orbital period of 76.3 min, lies just below the period minimum of ~82 min for cataclysmic variable stars (CVs). Averaging four eclipses reveals resolved eclipses of the white dwarf and bright spot. We determined the system parameters by fitting a parametrized eclipse model to the averaged light curve. We obtain a mass ratio of q = 0.087 ± 0.006 and inclination i = 85°.2 ± 0°.9. The primary and donor masses were found to be Mw = 0.73 ± 0.03 M⊙ and Md = 0.064 ± 0.005 M⊙, respectively. Through multicolour photometry a temperature of the white dwarf of Tw = 13 200 ± 700 K and a distance of 220 ± 50 pc were determined. The evolutionary state of PHL 1445 is uncertain. We are able to rule out a significantly evolved donor, but not one that is slightly evolved. Formation with a brown dwarf donor is plausible, though the brown dwarf would need to be no older than 600 Myr at the start of mass transfer, requiring an extremely low mass ratio (q = 0.025) progenitor system. PHL 1445 joins SDSS 1433 as a sub-period minimum CV with a substellar donor. The existence of two such systems raises an alternative possibility that current estimates for the intrinsic scatter and/or position of the period minimum may be in error.UK Science and Technology Facilities Council (STFC)FONDECY

    An irradiated brown-dwarf companion to an accreting white dwarf

    Get PDF
    Interacting compact binary systems provide a natural laboratory in which to study irradiated substellar objects. As the mass-losing secondary (donor) in these systems makes a transition from the stellar to the substellar regime, it is also irradiated by the primary (compact accretor)1, 2. The internal and external energy fluxes are both expected to be comparable in these objects, providing access to an unexplored irradiation regime. The atmospheric properties of donors are largely unknown3, but could be modified by the irradiation. To constrain models of donor atmospheres, it is necessary to obtain accurate observational estimates of their physical properties (masses, radii, temperatures and albedos). Here we report the spectroscopic detection and characterization of an irradiated substellar donor in an accreting white-dwarf binary system. Our near-infrared observations allow us to determine a model-independent mass estimate for the donor of 0.055 ± 0.008 solar masses and an average spectral type of L1 ± 1, supporting both theoretical predictions and model-dependent observational constraints that suggest that the donor is a brown dwarf. Our time-resolved data also allow us to estimate the average irradiation-induced temperature difference between the dayside and nightside of the substellar donor (57 kelvin) and the maximum difference between the hottest and coolest parts of its surface (200 kelvin). The observations are well described by a simple geometric reprocessing model with a bolometric (Bond) albedo of less than 0.54 at the 2σ confidence level, consistent with high reprocessing efficiency, but poor lateral heat redistribution in the atmosphere of the brown-dwarf donor4, 5. These results add to our knowledge of binary evolution, in that the donor has survived the transition from the stellar to the substellar regime, and of substellar atmospheres, in that we have been able to test a regime in which the irradiation and the internal energy of a brown dwarf are comparable

    Repetitive patterns in rapid optical variations in the nearby black-hole binary V404 Cygni

    Get PDF
    ブラックホール近傍から出る規則的なパターンを持つ光の変動を可視光で初めて捉えることに成功 -ブラックホールの「またたき」を直接目で観測できる機会に期待-. 京都大学プレスリリース. 2016-01-07.How black holes accrete surrounding matter is a fundamental yet unsolved question in astrophysics. It is generally believed that matter is absorbed into black holes via accretion disks, the state of which depends primarily on the mass-accretion rate. When this rate approaches the critical rate (the Eddington limit), thermal instability is supposed to occur in the inner disk, causing repetitive patterns of large-amplitude X-ray variability (oscillations) on timescales of minutes to hours. In fact, such oscillations have been observed only in sources with a high mass-accretion rate, such as GRS 1915+105 (refs 2, 3). These large-amplitude, relatively slow timescale, phenomena are thought to have physical origins distinct from those of X-ray or optical variations with small amplitudes and fast timescales (less than about 10 seconds) often observed in other black-hole binaries--for example, XTE J1118+480 (ref. 4) and GX 339−4 (ref. 5). Here we report an extensive multi-colour optical photometric data set of V404 Cygni, an X-ray transient source containing a black hole of nine solar masses (and a companion star) at a distance of 2.4 kiloparsecs (ref. 8). Our data show that optical oscillations on timescales of 100 seconds to 2.5 hours can occur at mass-accretion rates more than ten times lower than previously thought. This suggests that the accretion rate is not the critical parameter for inducing inner-disk instabilities. Instead, we propose that a long orbital period is a key condition for these large-amplitude oscillations, because the outer part of the large disk in binaries with long orbital periods will have surface densities too low to maintain sustained mass accretion to the inner part of the disk. The lack of sustained accretion--not the actual rate--would then be the critical factor causing large-amplitude oscillations in long-period systems

    Repetitive patterns in rapid optical variations in the nearby black-hole binary V404 Cygni

    No full text
    corecore