51 research outputs found
BRN2 suppresses apoptosis, reprograms DNA damage repair, and is associated with a high somatic mutation burden in melanoma
Whether cell types exposed to a high level of environmental insults possess cell type-specific prosurvival mechanisms or enhanced DNA damage repair capacity is not well understood. BRN2 is a tissue-restricted POU domain transcription factor implicated in neural development and several cancers. In melanoma, BRN2 plays a key role in promoting invasion and regulating proliferation. Here we found, surprisingly, that rather than interacting with transcription cofactors, BRN2 is instead associated with DNA damage response proteins and directly binds PARP1 and Ku70/Ku80. Rapid PARP1-dependent BRN2 association with sites of DNA damage facilitates recruitment of Ku80 and reprograms DNA damage repair by promoting Ku-dependent nonhomologous end-joining (NHEJ) at the expense of homologous recombination. BRN2 also suppresses an apoptosis-associated gene expression program to protect against UVB-, chemotherapy- and vemurafenib-induced apoptosis. Remarkably, BRN2 expression also correlates with a high single-nucleotide variation prevalence in human melanomas. By promoting error-prone DNA damage repair via NHEJ and suppressing apoptosis of damaged cells, our results suggest that BRN2 contributes to the generation of melanomas with a high mutation burden. Our findings highlight a novel role for a key transcription factor in reprogramming DNA damage repair and suggest that BRN2 may impact the response to DNA-damaging agents in BRN2-expressing cancers
Population-based analysis of POT1 variants in a cutaneous melanoma case–control cohort
Pathogenic germline variants in the protection of telomeres 1 gene (POT1) have been associated with predisposition to a range of tumour types, including melanoma, glioma, leukaemia and cardiac angiosarcoma. We sequenced all coding exons of the POT1 gene in 2928 European-descent melanoma cases and 3298 controls, identifying 43 protein-changing genetic variants. We performed POT1-telomere binding assays for all missense and stop-gained variants, finding nine variants that impair or disrupt protein–telomere complex formation, and we further define the role of variants in the regulation of telomere length and complex formation through molecular dynamics simulations. We determine that POT1 coding variants are a minor contributor to melanoma burden in the general population, with only about 0.5% of melanoma cases carrying germline pathogenic variants in this gene, but should be screened in individuals with a strong family history of melanoma and/or multiple malignancies
Peer Review #2 of "Bioinformatic analysis and identification of potential prognostic microRNAs and mRNAs in thyroid cancer (v0.2)"
Peer Review #2 of "Bioinformatic analysis and identification of potential prognostic microRNAs and mRNAs in thyroid cancer (v0.1)"
A genome-wide association study for regulators of micronucleus formation in mice
In mammals the regulation of genomic instability plays a key role in tumor suppression and also controls genome plasticity, which is important for recombination during the processes of immunity and meiosis. Most studies to identify regulators of genomic instability have been performed in cells in culture or in systems that report on gross rearrangements of the genome, yet subtle differences in the level of genomic instability can contribute to whole organism phenotypes such as tumor predisposition. Here we performed a genome-wide association study in a population of 1379 outbred Crl:CFW(SW)-US_P08 mice to dissect the genetic landscape of micronucleus formation, a biomarker of chromosomal breaks, whole chromosome loss, and extranuclear DNA. Variation in micronucleus levels is a complex trait with a genome-wide heritability of 53.1%. We identify seven loci influencing micronucleus formation (false discovery rate <5%), and define candidate genes at each locus. Intriguingly at several loci we find evidence for sexual dimorphism in micronucleus formation, with a locus on chromosome 11 being specific to males
O01: Using multiplexed functional data to reduce the VUS burden in populations underrepresented in genomic medicine
Defining novel causal SNPs and linked phenotypes at melanoma-associated loci
A number of genomic regions have been associated with melanoma risk through genome-wide association studies; however, the causal variants underlying the majority of these associations remain unknown. Here, we sequenced either the full locus or the functional regions including exons of 19 melanoma-associated loci in 1959 British melanoma cases and 737 controls. Variant filtering followed by Fisher’s exact test analyses identified 66 variants associated with melanoma risk. Sequential conditional logistic regression identified the distinct haplotypes on which variants reside, and massively parallel reporter assays provided biological insights into how these variants influence gene function. We performed further analyses to link variants to melanoma risk phenotypes and assessed their association with melanoma-specific survival. Our analyses replicate previously known associations in the melanocortin 1 receptor (MC1R) and tyrosinase (TYR) loci, while identifying novel potentially causal variants at the MTAP/CDKN2A and CASP8 loci. These results improve our understanding of the architecture of melanoma risk and outcome
- …
