4,169 research outputs found
High-throughput amplicon sequencing reveals distinct communities within a corroding concrete sewer system
This study investigated the variation in microbially induced concrete corrosion communities at different circumferential locations of a real sewer pipe and the effects of a wastewater flooding event on the community. Three distinct microbial community groups were found in different corrosion samples. The physico-chemical properties of the corrosion layers and the microbial communities were distinct for the cross-sectional positions within the pipe, ie ceiling, wall and tidal zones. The microbial communities detected from the same positions in the pipe were consistent over the length of the pipe, as well as being consistent between the replicate pipes. The dominating ceiling communities were members of the bacterial orders Rhodospirillales, Acidithiobacillales, Actinomycetales, Xanthomonadales and Acidobacteriales. The wall communities were composed of members of the Xanthomonadales, Hydrogenophilales, Chromatiales and Sphingobacteriales. The tidal zones were dominated by eight bacterial and one archaeal order, with the common physiological trait of anaerobic metabolism. Sewage flooding within the sewer system did not change the tidal and wall communities, although the corrosion communities in ceiling samples were notably different, becoming more similar to the wall and tidal samples. This suggests that sewage flooding has a significant impact on the corrosion community in sewers
Current quark mass dependence of nucleon magnetic moments and radii
A calculation of the current-quark-mass-dependence of nucleon static
electromagnetic properties is necessary in order to use observational data as a
means to place constraints on the variation of Nature's fundamental parameters.
A Poincare' covariant Faddeev equation, which describes baryons as composites
of confined-quarks and -nonpointlike-diquarks, is used to calculate this
dependence The results indicate that, like observables dependent on the
nucleons' magnetic moments, quantities sensitive to their magnetic and charge
radii, such as the energy levels and transition frequencies in Hydrogen and
Deuterium, might also provide a tool with which to place limits on the allowed
variation in Nature's constants.Comment: 23 pages, 2 figures, 4 tables, 4 appendice
Two- and three-point functions in two-dimensional Landau-gauge Yang-Mills theory: Continuum results
We investigate the Dyson-Schwinger equations for the gluon and ghost
propagators and the ghost-gluon vertex of Landau-gauge gluodynamics in two
dimensions. While this simplifies some aspects of the calculations as compared
to three and four dimensions, new complications arise due to a mixing of
different momentum regimes. As a result, the solutions for the propagators are
more sensitive to changes in the three-point functions and the ansaetze used
for them at the leading order in a vertex a expansion. Here, we therefore go
beyond this common truncation by including the ghost-gluon vertex
self-consistently for the first time, while using a model for the three-gluon
vertex which reproduces the known infrared asymptotics and the zeros at
intermediate momenta as observed on the lattice. A separate computation of the
three-gluon vertex from the results is used to confirm the stability of this
behavior a posteriori. We also present further arguments for the absence of the
decoupling solution in two dimensions. Finally, we show how in general the
infrared exponent kappa of the scaling solutions in two, three and four
dimensions can be changed by allowing an angle dependence and thus an essential
singularity of the ghost-gluon vertex in the infrared.Comment: 24 pages; added references, improved choices of parameters for vertex
models; identical to version published in JHE
Molecular phylogenetics reveals the evolutionary history of marine fishes (Actinopterygii) endemic to the subtropical islands of the Southwest Pacific
Remote oceanic islands of the Pacific host elevated levels of actinopterygian (ray-finned fishes) endemism. Characterizing the evolutionary histories of these endemics has provided insight into the generation and maintenance of marine biodiversity in many regions. The subtropical islands of Lord Howe, Norfolk, and Rangitāhua (Kermadec) in the Southwest Pacific are yet to be comprehensively studied. Here, we characterize the spatio-temporal diversification of marine fishes endemic to these Southwest Pacific islands by combining molecular phylogenies and the geographic distribution of species. We built Bayesian ultrametric trees based on open-access and newly generated sequences for five mitochondrial and ten nuclear loci, and using fossil data for time calibration. We present the most comprehensive phylogenies to date for marine ray-finned fish genera, comprising 34 species endemic to the islands, including the first phylogenetic placements for 11 endemics. Overall, our topologies confirm the species status of all endemics, including three undescribed taxa. Our phylogenies highlight the predominant affinity of these endemics with the Australian fish fauna (53%), followed by the East Pacific (15%), and individual cases where the closest sister taxon of our endemic is found in the Northwest Pacific and wider Indo-Pacific. Nonetheless, for a quarter of our focal endemics, their geographic affinity remains unresolved due to sampling gaps within their genera. Our divergence time estimates reveal that the majority of endemic lineages (67.6%) diverged after the emergence of Lord Howe (6.92 Ma), the oldest subtropical island in the Southwest Pacific, suggesting that these islands have promoted diversification. However, divergence ages of some endemics pre-date the emergence of the islands, suggesting they may have originated outside of these islands, or, in some cases, ages may be overestimated due to unsampled taxa. To fully understand the role of the Southwest Pacific subtropical islands as a 'cradle' for diversification, our study advocates for further regional surveys focused on tissue collection for DNA analysis.fals
Practical computational toolkits for dendrimers and dendrons structure design
Dendrimers and dendrons offer an excellent platform for developing novel drug delivery systems and medicines. The rational design and further development of these repetitively branched systems are restricted by difficulties in scalable synthesis and structural determination, which can be overcome by judicious use of molecular modelling and molecular simulations. A major difficulty to utilise in silico studies to design dendrimers lies in the laborious generation of their structures. Current modelling tools utilise automated assembly of simpler dendrimers or the inefficient manual assembly of monomer precursors to generate more complicated dendrimer structures. Herein we describe two novel graphical user interface (GUI) toolkits written in Python that provide an improved degree of automation for rapid assembly of dendrimers and generation of their 2D and 3D structures. Our first toolkit uses the RDkit library, SMILES nomenclature of monomers and SMARTS reaction nomenclature to generate SMILES and mol files of dendrimers without 3D coordinates. These files are used for simple graphical representations and storing their structures in databases. The second toolkit assembles complex topology dendrimers from monomers to construct 3D dendrimer structures to be used as starting points for simulation using existing and widely available software and force fields. Both tools were validated for ease-of-use to prototype dendrimer structure and the second toolkit was especially relevant for dendrimers of high complexity and size.Peer reviewe
Wilson Expansion of QCD Propagators at Three Loops: Operators of Dimension Two and Three
In this paper we construct the Wilson short distance operator product
expansion for the gluon, quark and ghost propagators in QCD, including
operators of dimension two and three, namely, A^2, m^2, m A^2, \ovl{\psi} \psi
and m^3. We compute analytically the coefficient functions of these operators
at three loops for all three propagators in the general covariant gauge. Our
results, taken in the Landau gauge, should help to improve the accuracy of
extracting the vacuum expectation values of these operators from lattice
simulation of the QCD propagators.Comment: 20 pages, no figure
Impact of facial conformation on canine health: Brachycephalic Obstructive Airway Syndrome
The domestic dog may be the most morphologically diverse terrestrial mammalian species known to man; pedigree dogs are artificially selected for extreme aesthetics dictated by formal Breed Standards, and breed-related disorders linked to conformation are ubiquitous and diverse. Brachycephaly–foreshortening of the facial skeleton–is a discrete mutation that has been selected for in many popular dog breeds e.g. the Bulldog, Pug, and French Bulldog. A chronic, debilitating respiratory syndrome, whereby soft tissue blocks the airways, predominantly affects dogs with this conformation, and thus is labelled Brachycephalic Obstructive Airway Syndrome (BOAS). Despite the name of the syndrome, scientific evidence quantitatively linking brachycephaly with BOAS is lacking, but it could aid efforts to select for healthier conformations. Here we show, in (1) an exploratory study of 700 dogs of diverse breeds and conformations, and (2) a confirmatory study of 154 brachycephalic dogs, that BOAS risk increases sharply in a non-linear manner as relative muzzle length shortens. BOAS only occurred in dogs whose muzzles comprised less than half their cranial lengths. Thicker neck girths also increased BOAS risk in both populations: a risk factor for human sleep apnoea and not previously realised in dogs; and obesity was found to further increase BOAS risk. This study provides evidence that breeding for brachycephaly leads to an increased risk of BOAS in dogs, with risk increasing as the morphology becomes more exaggerated. As such, dog breeders and buyers should be aware of this risk when selecting dogs, and breeding organisations should actively discourage exaggeration of this high-risk conformation in breed standards and the show ring
Recommended from our members
Atlantic overturning in decline?
Global ocean circulation is an important factor in climate variability and change. In particular, changes in the strength of the Atlantic meridional overturning circulation (AMOC) have been implicated in ancient climate events, as well as in recent climate anomalies such as the rapid warming of the North Atlantic Ocean in the mid-1990s. A series of moored current meters and temperature sensors deployed in the Atlantic at 26° N known as the RAPID-MOCHA array has been used to monitor the strength of meridional overturning since 2004. The data indicate a decline in this strength over the period 2004–20123. Here, using additional observations and climate model simulations we suggest that this measured decline is not merely a short-term fluctuation, but is part of a substantial reduction in meridional overturning occurring on a decadal timescale
Timed inhibition of CDC7 increases CRISPR-Cas9 mediated templated repair.
Repair of double strand DNA breaks (DSBs) can result in gene disruption or gene modification via homology directed repair (HDR) from donor DNA. Altering cellular responses to DSBs may rebalance editing outcomes towards HDR and away from other repair outcomes. Here, we utilize a pooled CRISPR screen to define host cell involvement in HDR between a Cas9 DSB and a plasmid double stranded donor DNA (dsDonor). We find that the Fanconi Anemia (FA) pathway is required for dsDonor HDR and that other genes act to repress HDR. Small molecule inhibition of one of these repressors, CDC7, by XL413 and other inhibitors increases the efficiency of HDR by up to 3.5 fold in many contexts, including primary T cells. XL413 stimulates HDR during a reversible slowing of S-phase that is unexplored for Cas9-induced HDR. We anticipate that XL413 and other such rationally developed inhibitors will be useful tools for gene modification
Vaccines against toxoplasma gondii : challenges and opportunities
Development of vaccines against Toxoplasma gondii infection in humans is of high priority, given the high burden of disease in some areas of the world like South America, and the lack of effective drugs with few adverse effects. Rodent models have been used in research on vaccines against T. gondii over the past decades. However, regardless of the vaccine construct, the vaccines have not been able to induce protective immunity when the organism is challenged with T. gondii, either directly or via a vector. Only a few live, attenuated T. gondii strains used for immunization have been able to confer protective immunity, which is measured by a lack of tissue cysts after challenge. Furthermore, challenge with low virulence strains, especially strains with genotype II, will probably be insufficient to provide protection against the more virulent T. gondii strains, such as those with genotypes I or II, or those genotypes from South America not belonging to genotype I, II or III. Future studies should use animal models besides rodents, and challenges should be performed with at least one genotype II T. gondii and one of the more virulent genotypes. Endpoints like maternal-foetal transmission and prevention of eye disease are important in addition to the traditional endpoint of survival or reduction in numbers of brain cysts after challenge
- …
