1,276 research outputs found

    Early development of the malleus and incus in humans.

    Get PDF
    It is widely accepted by developmental biologists that the malleus and incus of the mammalian middle ear are first pharyngeal arch derivatives, a contention based originally on classical embryology that has now been backed up by molecular evidence from rodent models. However, it has been claimed in several studies of human ossicular development that the manubrium of the malleus and long process of the incus are actually derived from the second arch. This 'dual-arch' interpretation is commonly presented in otolaryngology textbooks, and it has been used by clinicians to explain the aetiology of certain congenital abnormalities of the human middle ear. In order to re-examine the origins of the human malleus and incus, we made three-dimensional reconstructions of the pharyngeal region of human embryos from 7 to 28 mm crown-rump length, based on serial histological sections from the Boyd Collection. We considered the positions of the developing ossicles relative to the pharyngeal pouches and clefts, and the facial and chorda tympani nerves. Confirming observations from previous studies, the primary union between first pharyngeal pouch and first cleft found in our youngest specimens was later lost, the external meatus developing rostroventral to this position. The mesenchyme of the first and second arches in these early embryos seemed to be continuous, but the boundaries of the developing ossicles proved to be very hard to determine at this stage. When first distinguishable, the indications were that both the manubrium of the malleus and the long process of the incus were emerging within the first pharyngeal arch. We therefore conclude that the histological evidence, on balance, favours the 'classical' notion that the human malleus and incus are first-arch structures. The embryological basis of congenital ossicular abnormalities should be reconsidered in this light.This is the author accepted manuscript. The final version is available from Wiley via https://doi.org/10.1111/joa.1252

    Astronomical Spectroscopy

    Full text link
    Spectroscopy is one of the most important tools that an astronomer has for studying the universe. This chapter begins by discussing the basics, including the different types of optical spectrographs, with extension to the ultraviolet and the near-infrared. Emphasis is given to the fundamentals of how spectrographs are used, and the trade-offs involved in designing an observational experiment. It then covers observing and reduction techniques, noting that some of the standard practices of flat-fielding often actually degrade the quality of the data rather than improve it. Although the focus is on point sources, spatially resolved spectroscopy of extended sources is also briefly discussed. Discussion of differential extinction, the impact of crowding, multi-object techniques, optimal extractions, flat-fielding considerations, and determining radial velocities and velocity dispersions provide the spectroscopist with the fundamentals needed to obtain the best data. Finally the chapter combines the previous material by providing some examples of real-life observing experiences with several typical instruments.Comment: An abridged version of a chapter to appear in Planets, Stars and Stellar Systems, to be published in 2011 by Springer. Slightly revise

    Analysing and Recommending Options for Maintaining Universal Coverage with Long-Lasting Insecticidal Nets: The Case of Tanzania in 2011.

    Get PDF
    Tanzania achieved universal coverage with long-lasting insecticidal nets (LLINs) in October 2011, after three years of free mass net distribution campaigns and is now faced with the challenge of maintaining high coverage as nets wear out and the population grows. A process of exploring options for a continuous or "Keep-Up" distribution system was initiated in early 2011. This paper presents for the first time a comprehensive national process to review the major considerations, findings and recommendations for the implementation of a new strategy. Stakeholder meetings and site visits were conducted in five locations in Tanzania to garner stakeholder input on the proposed distribution systems. Coverage levels for LLINs and their decline over time were modelled using NetCALC software, taking realistic net decay rates, current demographic profiles and other relevant parameters into consideration. Costs of the different distribution systems were estimated using local data. LLIN delivery was considered via mass campaigns, Antenatal Care-Expanded Programme on Immunization (ANC/EPI), community-based distribution, schools, the commercial sector and different combinations of the above. Most approaches appeared unlikely to maintain universal coverage when used alone. Mass campaigns, even when combined with a continuation of the Tanzania National Voucher Scheme (TNVS), would produce large temporal fluctuations in coverage levels; over 10 years this strategy would require 63.3 million LLINs and a total cost of 444millionUSD.Communitymechanisms,whileabletodelivertherequirednumbersofLLINs,wouldrequireamassivescale−upinmonitoring,evaluationandsupervisionsystemstoensureaccurateapplicationofidentificationcriteriaatthecommunitylevel.School−basedapproachescombinedwiththeexistingTNVSwouldreachmostTanzanianhouseholdsanddeliver65.4millionLLINsover10yearsatatotalcostof444 million USD. Community mechanisms, while able to deliver the required numbers of LLINs, would require a massive scale-up in monitoring, evaluation and supervision systems to ensure accurate application of identification criteria at the community level. School-based approaches combined with the existing TNVS would reach most Tanzanian households and deliver 65.4 million LLINs over 10 years at a total cost of 449 million USD and ensure continuous coverage. The cost of each strategy was largely driven by the number of LLINs delivered. The most cost-efficient strategy to maintain universal coverage is one that best optimizes the numbers of LLINs needed over time. A school-based approach using vouchers targeting all students in Standards 1, 3, 5, 7 and Forms 1 and 2 in combination with the TNVS appears to meet best the criteria of effectiveness, equity and efficiency

    Massive Peatland Carbon Banks Vulnerable to Rising Temperatures

    Get PDF
    Peatlands contain one-third of the world’s soil carbon (C). If destabilized, decomposition of this vast C bank could accelerate climate warming; however, the likelihood of this outcome remains unknown. Here, we examine peatland C stability through five years of whole-ecosystem warming and two years of elevated atmospheric carbon dioxide concentrations (eCO2). Warming exponentially increased methane (CH4) emissions and enhanced CH4 production rates throughout the entire soil profile; although surface CH4 production rates remain much greater than those at depth. Additionally, older deeper C sources played a larger role in decomposition following prolonged warming. Most troubling, decreases in CO2:CH4 ratios in gas production, porewater concentrations, and emissions, indicate that the peatland is becoming more methanogenic with warming. We observed limited evidence of eCO2 effects. Our results suggest that ecosystem responses are largely driven by surface peat, but that the vast C bank at depth in peatlands is responsive to prolonged warming

    Gauge symmetry and W-algebra in higher derivative systems

    Full text link
    The problem of gauge symmetry in higher derivative Lagrangian systems is discussed from a Hamiltonian point of view. The number of independent gauge parameters is shown to be in general {\it{less}} than the number of independent primary first class constraints, thereby distinguishing it from conventional first order systems. Different models have been considered as illustrative examples. In particular we show a direct connection between the gauge symmetry and the W-algebra for the rigid relativistic particle.Comment: 1+22 pages, 1 figure, LaTeX, v2; title changed, considerably expanded version with new results, to appear in JHE

    High energy emission from microquasars

    Full text link
    The microquasar phenomenon is associated with the production of jets by X-ray binaries and, as such, may be associated with the majority of such systems. In this chapter we briefly outline the associations, definite, probable, possible, and speculative, between such jets and X-ray, gamma-ray and particle emission.Comment: Contributing chapter to the book Cosmic Gamma-Ray Sources, K.S. Cheng and G.E. Romero (eds.), to be published by Kluwer Academic Publishers, Dordrecht, 2004. (19 pages

    MICE: The muon ionization cooling experiment. Step I: First measurement of emittance with particle physics detectors

    Get PDF
    Copyright @ 2011 APSThe Muon Ionization Cooling Experiment (MICE) is a strategic R&D project intended to demonstrate the only practical solution to providing high brilliance beams necessary for a neutrino factory or muon collider. MICE is under development at the Rutherford Appleton Laboratory (RAL) in the United Kingdom. It comprises a dedicated beamline to generate a range of input muon emittances and momenta, with time-of-flight and Cherenkov detectors to ensure a pure muon beam. The emittance of the incoming beam will be measured in the upstream magnetic spectrometer with a scintillating fiber tracker. A cooling cell will then follow, alternating energy loss in Liquid Hydrogen (LH2) absorbers to RF cavity acceleration. A second spectrometer, identical to the first, and a second muon identification system will measure the outgoing emittance. In the 2010 run at RAL the muon beamline and most detectors were fully commissioned and a first measurement of the emittance of the muon beam with particle physics (time-of-flight) detectors was performed. The analysis of these data was recently completed and is discussed in this paper. Future steps for MICE, where beam emittance and emittance reduction (cooling) are to be measured with greater accuracy, are also presented.This work was supported by NSF grant PHY-0842798

    Lack of association between genetic polymorphisms within DUSP12 - ATF6 locus and glucose metabolism related traits in a Chinese population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome-wide linkage studies in multiple ethnic populations found chromosome 1q21-q25 was the strongest and most replicable linkage signal in the human chromosome. Studies in Pima Indian, Caucasians and African Americans identified several SNPs in <it>DUSP12 </it>and <it>ATF6</it>, located in chromosome 1q21-q23, were associated with type 2 diabetes.</p> <p>Methods</p> <p>We selected 19 single nucleotide polymorphisms (SNPs) that could tag 98% of the SNPs with minor allele frequencies over 0.1 within <it>DUSP12-ATF6 </it>region. These SNPs were genotyped in a total of 3,700 Chinese Han subjects comprising 1,892 type 2 diabetes patients and 1,808 controls with normal glucose regulation.</p> <p>Results</p> <p>None of the SNPs and haplotypes showed significant association to type 2 diabetes in our samples. No association between the SNPs and quantitative traits was observed either.</p> <p>Conclusions</p> <p>Our data suggests common SNPs within <it>DUSP12</it>-<it>ATF6 </it>locus may not play a major role in glucose metabolism in the Chinese.</p
    • 

    corecore