53 research outputs found

    Lethality and Developmental Delay in Drosophila melanogaster Larvae after Ingestion of Selected Pseudomonas fluorescens Strains

    Get PDF
    The fruit fly, Drosophila melanogaster, is a well-established model organism for probing the molecular and cellular basis of physiological and immune system responses of adults or late stage larvae to bacterial challenge. However, very little is known about the consequences of bacterial infections that occur in earlier stages of development. We have infected mid-second instar larvae with strains of Pseudomonas fluorescens to determine how infection alters the ability of larvae to survive and complete development.We mimicked natural routes of infection using a non-invasive feeding procedure to study the toxicity of the three sequenced P. fluorescens strains (Pf0-1, SBW25, and Pf-5) to Drosophila melanogaster. Larvae fed with the three strains of P. fluorescens showed distinct differences in developmental trajectory and survival. Treatment with SBW25 caused a subset of insects to die concomitant with a systemic melanization reaction at larval, pupal or adult stages. Larvae fed with Pf-5 died in a dose-dependent manner with adult survivors showing eye and wing morphological defects. In addition, larvae in the Pf-5 treatment groups showed a dose-dependent delay in the onset of metamorphosis relative to control-, Pf0-1-, and SBW25-treated larvae. A functional gacA gene is required for the toxic properties of wild-type Pf-5 bacteria.These experiments are the first to demonstrate that ingestion of P. fluorescens bacteria by D. melanogaster larvae causes both lethal and non-lethal phenotypes, including delay in the onset of metamorphosis and morphological defects in surviving adult flies, which can be decoupled

    Predictors of Shoulder Pain and Disability Index (SPADI) and work status after 1 year in patients with subacromial shoulder pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Shoulder pain is a common complaint in primary health care and has an unfavourable outcome in many patients. The objectives were to identify predictors for pain and disability (SPADI) and work status in patients with subacromial shoulder pain.</p> <p>Methods</p> <p>Secondary analyses of data from a randomized clinical controlled trial were performed. Outcome measures were the absolute values of the combined Shoulder Pain and Disability Index (SPADI) and work status 1 year after treatment with supervised exercises (SE) or radial extracorporeal shockwave therapy (rESWT). Predictors of outcome were investigated using multiple linear regression (SPADI) and logistic regression (work status).</p> <p>Results</p> <p>104 patients were included. Low education (≤ 12 years), previous shoulder pain, and a high baseline SPADI score predicted poor results with these variables explaining 29.9% of the variance in SPADI score at 1 year. Low education and poor self-reported health status predicted a work status of "not working": Odds Ratio, OR = 4.3(95% CI (1.3 to 14.9)), p = 0.02 for education, and OR = 1.06 (95% CI (1.0 to 1.1)), p = 0.001 for self-reported health status, respectively. Adjustments for age, gender, and treatment group were performed, but did not change the results.</p> <p>Conclusion</p> <p>Education was the most consistent predictor of pain and disability, and work status at 1 year follow-up. Also, baseline SPADI score, previous shoulder pain and self-reported health status predicted outcome.</p> <p>Trial registration</p> <p>Clinical trials NCT00653081</p

    Drosophila melanogaster as a Model Host for the Burkholderia cepacia Complex

    Get PDF
    Colonization with bacterial species from the Burkholderia cepacia complex (Bcc) is associated with fast health decline among individuals with cystic fibrosis. In order to investigate the virulence of the Bcc, several alternative infection models have been developed. To this end, the fruit fly is increasingly used as surrogate host, and its validity to enhance our understanding of host-pathogen relationships has been demonstrated with a variety of microorganisms. Moreover, its relevance as a suitable alternative to mammalian hosts has been confirmed with vertebrate organisms.The aim of this study was to establish Drosophila melanogaster as a surrogate host for species from the Bcc. While the feeding method proved unsuccessful at killing the flies, the pricking technique did generate mortality within the populations. Results obtained with the fruit fly model are comparable with results obtained using mammalian infection models. Furthermore, validity of the Drosophila infection model was confirmed with B. cenocepacia K56-2 mutants known to be less virulent in murine hosts or in other alternative models. Competitive index (CI) analyses were also performed using the fruit fly as host. Results of CI experiments agree with those obtained with mammalian models.We conclude that Drosophila is a useful alternative infection model for Bcc and that fly pricking assays and competition indices are two complementary methods for virulence testing. Moreover, CI results indicate that this method is more sensitive than mortality tests

    Back Complaints in the Elders (BACE); design of cohort studies in primary care: an international consortium

    Get PDF
    Background: Although back complaints are common among older people, limited information is available in the literature about the clinical course of back pain in older people and the identification of older persons at risk for the transition from acute back complaints to chronic back pain. The aim of this study is to assess the course of back complaints and identify prognostic factors for the transition from acute back complaints to chronic back complaints in older people who visit a primary health care physician. Methods/design. The design is a prospective cohort study with one-year follow-up. There will be no interference with usual care. Patients older than 55 years who consult a primary health care physician with a new episode of back complaints will be included in this study. Data will be collected using a questionnaire, physical examination and X-ray at baseline, and follow-up questionnaires afte

    Bacterial Communities of Diverse Drosophila Species: Ecological Context of a Host–Microbe Model System

    Get PDF
    Drosophila melanogaster is emerging as an important model of non-pathogenic host–microbe interactions. The genetic and experimental tractability of Drosophila has led to significant gains in our understanding of animal–microbial symbiosis. However, the full implications of these results cannot be appreciated without the knowledge of the microbial communities associated with natural Drosophila populations. In particular, it is not clear whether laboratory cultures can serve as an accurate model of host–microbe interactions that occur in the wild, or those that have occurred over evolutionary time. To fill this gap, we characterized natural bacterial communities associated with 14 species of Drosophila and related genera collected from distant geographic locations. To represent the ecological diversity of Drosophilids, examined species included fruit-, flower-, mushroom-, and cactus-feeders. In parallel, wild host populations were compared to laboratory strains, and controlled experiments were performed to assess the importance of host species and diet in shaping bacterial microbiome composition. We find that Drosophilid flies have taxonomically restricted bacterial communities, with 85% of the natural bacterial microbiome composed of only four bacterial families. The dominant bacterial taxa are widespread and found in many different host species despite the taxonomic, ecological, and geographic diversity of their hosts. Both natural surveys and laboratory experiments indicate that host diet plays a major role in shaping the Drosophila bacterial microbiome. Despite this, the internal bacterial microbiome represents only a highly reduced subset of the external bacterial communities, suggesting that the host exercises some level of control over the bacteria that inhabit its digestive tract. Finally, we show that laboratory strains provide only a limited model of natural host–microbe interactions. Bacterial taxa used in experimental studies are rare or absent in wild Drosophila populations, while the most abundant associates of natural Drosophila populations are rare in the lab

    Glucose sensing in the pancreatic beta cell: a computational systems analysis

    Get PDF

    The Drosophila melanogaster host model

    Get PDF
    The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen–host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial–host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis–host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed

    Low back pain in older adults: risk factors, management options and future directions

    Full text link
    corecore